Pure cubic optical solitons with improved tan(φ/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$tan(\varphi /2)$$\end{document}-expansion method

被引:0
作者
Yeşim Sağlam Özkan
Mostafa Eslami
Hadi Rezazadeh
机构
[1] Bursa Uludag University,Department of Mathematics, Faculty of Arts and Science
[2] University of Mazandaran,Department of Mathematics, Faculty of Mathematical Sciences
[3] Amol University of Special Modern Technologies,Faculty of Engineering Technology
关键词
Improved ; -expansion method; Pure cubic; Optical solitons; 83C15; 35Q51; 37K40;
D O I
10.1007/s11082-021-03120-6
中图分类号
学科分类号
摘要
In this paper, we considered the nonlinear Schrodinger equation modeling cubic optical solitons in a polarization-preserving fiber with Kerr law. Using the improved tan(φ/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$tan(\varphi /2)$$\end{document}-expansion method, a powerful and effective method, we constructed exact solutions including the hyperbolic function solution, the trigonometric function solution, the exponential solution and the rational solution with free parameters. The geometrical shapes for some of the obtained results are depicted for various choices of the free parameters that appear in the results. The obtained solutions are entirely new and can be considered as generalization of the existing results in the ordinary derivative case.
引用
收藏
相关论文
共 158 条
[1]  
Az-Zo’bi EA(2019)Peakon and solitary wave solutions for the modified Fornberg–Whitham equation using simplest equation method Int. J. Math. Comput. Sci. 14 635-645
[2]  
Blanco-Redondo A(2016)Pure-quartic solitons Nat. Commun. 7 1-9
[3]  
De Sterke CM(2014)Exact solutions of time-fractional KdV equations by using generalized Kudryashov method Int. J. Model. Optim. 4 315-2821
[4]  
Sipe JE(2020)Periodic soliton interactions for higher-order nonlinear Schrödinger equation in optical fibers Nonlinear Dyn. 100 2817-2981
[5]  
Krauss TF(2011)Analytical treatment of some partial differential equations arising in mathematical physics by using the Exp-function method Int. J. Mod. Phys. B 25 2965-331
[6]  
Eggleton BJ(2019)Analytic study on the influences of higher-order effects on optical solitons in fiber laser Optik 186 326-13
[7]  
Husko C(2020)Novel explicit solutions for the nonlinear Zoomeron equation by using newly extended direct algebraic technique Opt. Quant. Electron. 52 1-589
[8]  
Bulut H(2019)Solitary wave solutions to the Tzitzeica type equations obtained by a new efficient approach J. Appl. Anal. Comput. 9 568-25
[9]  
Pandir Y(2020)Abundant solitary wave solutions to an extended nonlinear Schrödinger's equation with conformable derivative using an efficient integration method Adv. Differ. Equ. 2020 1-15
[10]  
Demiray ST(2019)The new exact solitary wave solutions and stability analysis for the (2+1)-dimensional Zakharov–Kuznetsov equation Adv. Differ. Equ. 2019 1-167