Mathematical Model of COVID-19 Pandemic with Double Dose Vaccination

被引:0
作者
Olumuyiwa James Peter
Hasan S. Panigoro
Afeez Abidemi
Mayowa M. Ojo
Festus Abiodun Oguntolu
机构
[1] University of Medical Sciences,Department of Mathematical and Computer Sciences
[2] University of Medical Sciences,Department of Epidemiology and Biostatistics, School of Public Health
[3] State University of Gorontalo,Department of Mathematics
[4] Federal University of Technology,Department of Mathematical Sciences
[5] Universiti Teknologi Malaysia,Department of Mathematical Sciences
[6] University of South Africa,Department of Mathematical Sciences
[7] Thermo Fisher Scientific,Microbiology Division
[8] Federal University of Technology,Department of Mathematics
来源
Acta Biotheoretica | 2023年 / 71卷
关键词
Mathematical model; COVID-19; Effective reproduction number; Sensitivity analysis; 92B05; 91A40; 93D20; 34D23;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the formulation and analysis of an epidemic model of COVID-19 governed by an eight-dimensional system of ordinary differential equations, by taking into account the first dose and the second dose of vaccinated individuals in the population. The developed model is analyzed and the threshold quantity known as the control reproduction number R0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {R}_{0}$$\end{document} is obtained. We investigate the equilibrium stability of the system, and the COVID-free equilibrium is said to be locally asymptotically stable when the control reproduction number is less than unity, and unstable otherwise. Using the least-squares method, the model is calibrated based on the cumulative number of COVID-19 reported cases and available information about the mass vaccine administration in Malaysia between the 24th of February 2021 and February 2022. Following the model fitting and estimation of the parameter values, a global sensitivity analysis was performed by using the Partial Rank Correlation Coefficient (PRCC) to determine the most influential parameters on the threshold quantities. The result shows that the effective transmission rate (α)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\alpha )$$\end{document}, the rate of first vaccine dose (ϕ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\phi )$$\end{document}, the second dose vaccination rate (σ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\sigma )$$\end{document} and the recovery rate due to the second dose of vaccination (η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\eta )$$\end{document} are the most influential of all the model parameters. We further investigate the impact of these parameters by performing a numerical simulation on the developed COVID-19 model. The result of the study shows that adhering to the preventive measures has a huge impact on reducing the spread of the disease in the population. Particularly, an increase in both the first and second dose vaccination rates reduces the number of infected individuals, thus reducing the disease burden in the population.
引用
收藏
相关论文
共 50 条
[41]   A mathematical model for COVID-19 pandemic-SIIR model: Effects of asymptomatic individuals [J].
Tomochi, Masaki ;
Kono, Mitsuo .
JOURNAL OF GENERAL AND FAMILY MEDICINE, 2021, 22 (01) :5-14
[42]   A mathematical model for COVID-19 transmission dynamics with a case study of India [J].
Samui, Piu ;
Mondal, Jayanta ;
Khajanchi, Subhas .
CHAOS SOLITONS & FRACTALS, 2020, 140
[43]   A Mathematical Model for the COVID-19 Pandemic in Tokyo through Changing Point Calculus [J].
Martinez-Vazquez, Laura ;
Casas, Pau .
APPLIED SCIENCES-BASEL, 2023, 13 (22)
[44]   Dynamic analysis of a mathematical model with health care capacity for COVID-19 pandemic [J].
Cakan, Sumeyye .
CHAOS SOLITONS & FRACTALS, 2020, 139
[45]   Mathematical modeling and dynamic analysis of SIQR model with delay for pandemic COVID-19 [J].
Lu, Hongfan ;
Ding, Yuting ;
Gong, Silin ;
Wang, Shishi .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (04) :3197-3214
[46]   Modelling the impacts of media campaign and double dose vaccination in controlling COVID-19 in Nigeria [J].
Akinwande, N. I. ;
Somma, S. A. ;
Olayiwola, R. O. ;
Ashezua, T. T. ;
Gweryina, R. I. ;
Oguntolu, F. A. ;
Abdurahman, O. N. ;
Kaduna, F. S. ;
Adajime, T. P. ;
Kuta, F. A. ;
Abdulrahman, S. ;
Enagi, A. I. ;
Bolarin, G. A. ;
Shehu, M. D. ;
Usman, A. .
ALEXANDRIA ENGINEERING JOURNAL, 2023, 80 :167-190
[47]   Mathematical model of a dynamic transmission of novel coronavirus (COVID-19) pandemic in the World [J].
Myilsamy, Kalaiselvi ;
Kumar, Muthukrishnan Senthil ;
Kumar, Athira Satheesh .
JOURNAL OF STATISTICS AND MANAGEMENT SYSTEMS, 2022, 25 (08) :1849-1869
[48]   Stability analysis and approximate solution of interval mathematical model for the COVID-19 pandemic [J].
Karunakar, Perumandla ;
Reddy, K. Shiva ;
Chakraverty, Snehashish .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, :7641-7650
[49]   A fractional-order mathematical model for analyzing the pandemic trend of COVID-19 [J].
Agarwal, Praveen ;
Ramadan, Mohamed A. ;
Rageh, Abdulqawi A. M. ;
Hadhoud, Adel R. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (08) :4625-4642
[50]   The Effects of the COVID-19 Pandemic on Vaccination Hesitancy: A Viewpoint [J].
Leonardelli, Mirko ;
Mele, Federica ;
Marrone, Maricla ;
Germinario, Cinzia Annatea ;
Tafuri, Silvio ;
Moscara, Lorenza ;
Bianchi, Francesco Paolo ;
Stefanizzi, Pasquale .
VACCINES, 2023, 11 (07)