Holomorphic extensions and theta functions on complex tori

被引:0
作者
Roman J. Dwilewicz
机构
[1] Missouri University of Science and Technology,Department of Mathematics
[2] Cardinal Stefan Wyszyński University,Faculty of Mathematics
来源
Monatshefte für Mathematik | 2013年 / 169卷
关键词
Complex tori; Vector bundles; CR functions; Theta functions; Primary: 32L05; Secondary: 32V25; 14K25; 14K20; 32L20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give a complete characterization of vector bundles of any dimension over complex tori in which the Hartogs–Bochner holomorphic extension phenomenon holds. Since holomorphic sections of line bundles over complex tori can be identified with theta functions, the results are formulated in terms of this class.
引用
收藏
页码:145 / 160
页数:15
相关论文
共 24 条
  • [11] Frobenius G.(1975)On boundaries of complex analytic varieties I Ann. Math. 102 233-290
  • [12] Gilligan B.(1977)On boundaries of complex analytic varieties II Ann. Math. 106 213-238
  • [13] Huckleberry A.T.(1944)Enden offener Räume und unendliche diskontinuierliche Gruppen Comment. Math. Helv. 16 81-100
  • [14] Hartogs F.(1992)The Hartogs-type extension theorem for meromorphic maps into compact Kähler manifolds Invent. Math. 109 47-54
  • [15] Harvey R.(1965)On the extension of holomorphic functions from the boundary of a complex manifold Ann. Math. 81 451-472
  • [16] Lawson B.(1999)CR meromorphic extension and the non-embedding of the Andreotti-Rossi CR structure in the projective space International J. Math. 10 897-915
  • [17] Harvey R.(2003)Hartogs–Bochner type theorem in projective space Ark. Mat. 41 151-163
  • [18] Lawson B.(undefined)undefined undefined undefined undefined-undefined
  • [19] Hopf H.(undefined)undefined undefined undefined undefined-undefined
  • [20] Ivashkovich S.(undefined)undefined undefined undefined undefined-undefined