Holomorphic extensions and theta functions on complex tori

被引:0
作者
Roman J. Dwilewicz
机构
[1] Missouri University of Science and Technology,Department of Mathematics
[2] Cardinal Stefan Wyszyński University,Faculty of Mathematics
来源
Monatshefte für Mathematik | 2013年 / 169卷
关键词
Complex tori; Vector bundles; CR functions; Theta functions; Primary: 32L05; Secondary: 32V25; 14K25; 14K20; 32L20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we give a complete characterization of vector bundles of any dimension over complex tori in which the Hartogs–Bochner holomorphic extension phenomenon holds. Since holomorphic sections of line bundles over complex tori can be identified with theta functions, the results are formulated in terms of this class.
引用
收藏
页码:145 / 160
页数:15
相关论文
共 24 条
  • [1] Andreotti A.(1972)E.E. Levi convexity and the Hans Lewy problem. Part I: Reduction to vanishing theorems Ann. Scuola Norm. Sup. Pisa 26 325-363
  • [2] Hill C.D.(1997)Chaînes holomorphes de bord donné dans Bull. Soc. Math. France 125 383-446
  • [3] Dolbeault P.(2006)Additive Riemann–Hilbert problem in line bundles over Can. Math. Bull. 49 72-81
  • [4] Henkin G.M.(2006)Holomorphic extensions in complex fiber bundles J. Math. Analy. Appl. 322 556-565
  • [5] Dwilewicz R.(2002)On the Hartogs–Bochner phenomenon for CR functions in Proc. AMS 130 1975-1980
  • [6] Dwilewicz R.(1961)A new proof and an extension of Hartogs’ theorem Bull. Am. Math. Soc. 67 507-509
  • [7] Dwilewicz R.(1931)Über die Enden topologischer Räume und Gruppen Math. Z. 33 692-713
  • [8] Merker J.(1884)Über die Grundlagen der Theorie der Jacobischen Functionen J. Reine Angew. Math. 97 188-223
  • [9] Ehrenpreis L.(1981)Complex homogeneous manifolds with two ends Mich. Math. J. 28 183-198
  • [10] Freudenthal H.(1906)Zur Theorie der analytischen Functionen mehrener unabhangiger Veränderlichen insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten Math. Ann. 62 1-88