On the notion of essential dimension for algebraic groups

被引:0
作者
Z. Reichstein
机构
[1] Oregon State University,Department of Mathematics
来源
Transformation Groups | 2000年 / 5卷
关键词
General Theory; Quadratic Form; Specific Group; Topological Group; Algebraic Group;
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and study the notion of essential dimension for linear algebraic groups defined over an algebraically closed fields of characteristic zero. The essential dimension is a numerical invariant of the group; it is often equal to the minimal number of independent parameters required to describe all algebraic objects of a certain type. For example, if our groupG isSn, these objects are field extensions; ifG=On, they are quadratic forms; ifG=PGLn, they are division algebras (all of degreen); ifG=G2, they are octonion algebras; ifG=F4, they are exceptional Jordan algebras. We develop a general theory, then compute or estimate the essential dimension for a number of specific groups, including all of the above-mentioned examples. In the last section we give an exposition of results, communicated to us by J.-P. Serre, relating essential dimension to Galois cohomology.
引用
收藏
页码:265 / 304
页数:39
相关论文
共 20 条
  • [1] Bayer-Fluckiger E.(1994)Galois cohomology and the trace form Jahresber. Deutsch. Math.-Verein 96 35-55
  • [2] Bayer-Fluckiger E.(1995) ≤2 Invent. Math. 122 195-229
  • [3] Parimala R.(1985)Рациональносмь некоморых факмор-многообразий Мат. Сборник 126 584-589
  • [4] Богомолов Ф.(1997)On the essential dimension of a finite group Compositio Math. 106 159-179
  • [5] Кацыло П.(1962) 2 C. R. Acad. Sci. Paris 255 1366-1368
  • [6] Buhler J.(1966)On rational invariants of the group E Proc. Amer. Math. Soc. 124 3637-3640
  • [7] Reichstein Z.(1983) SL Изв. АН СССР, сер. мат. 47 26-36
  • [8] Delzant A.(1989), Соврем. проблемы математики. Фунд. направл. ВИНИТИ, Москва 55 137-309
  • [9] Iltyakov A. V.(1967)Non-commutative affine rings Atti Acc. Naz. Lincei VIII 239-255
  • [10] Кацыло П. И.(1976)The invariant theory of n × n-matrices Adv. Math. 19 306-381