Vertex fault tolerant additive spanners

被引:0
作者
Merav Parter
机构
[1] The Weizmann Institute of Science,
来源
Distributed Computing | 2017年 / 30卷
关键词
Spanners; Replacement-paths; Additive stretch;
D O I
暂无
中图分类号
学科分类号
摘要
A fault-tolerant structure for a network is required to continue functioning following the failure of some of the network’s edges or vertices. In this paper, we address the problem of designing a fault-tolerant additive spanner, namely, a subgraph H of the network G such that subsequent to the failure of a single vertex, the surviving part of H still contains an additive spanner for (the surviving part of) G, satisfying dist(s,t,H\{v})≤dist(s,t,G\{v})+β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{dist}(s,t,H{\setminus } \{v\}) \le \mathrm{dist}(s,t,G{\setminus } \{v\})+\beta $$\end{document} for every s,t,v∈V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s,t,v \in V$$\end{document}. Recently, the problem of constructing fault-tolerant additive spanners resilient to the failure of up to fedges has been considered (Braunschvig et al. Proceedings of the WG, pp 206–214, 2012). The problem of handling vertex failures was left open therein. In this paper we develop new techniques for constructing additive FT-spanners overcoming the failure of a single vertex in the graph. Our first result is an FT-spanner with additive stretch 2 and O(n5/3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{5/3})$$\end{document} edges. Our second result is an FT-spanner with additive stretch 6 and O(n3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{3/2})$$\end{document} edges. The construction algorithm consists of two main components: (a) constructing an FT-clustering graph and (b) applying a modified path-buying procedure suitably adapted to failure prone settings. Finally, we also describe two constructions for fault-tolerant multi-source additive spanners, aiming to guarantee a bounded additive stretch following a vertex failure, for every pair of vertices in S×V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S \times V$$\end{document} for a given subset of sources S⊆V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq V$$\end{document}. The additive stretch bounds of our constructions are 4 and 8 (using a different number of edges).
引用
收藏
页码:357 / 372
页数:15
相关论文
共 15 条
[1]  
Aingworth D(1999)Fast estimation of diameter and shortest paths (without matrix multiplication) SIAM J. Comput. 28 1167-1181
[2]  
Chekuri C(2006)Approximate distance oracles for unweighted graphs in expected ACM Trans. Algorithms 2 557-577
[3]  
Indyk P(2012) time Algorithmica 63 861-882
[4]  
Motwani R(2000)-sensitivity distance oracles and routing schemes SIAM J. Comput. 29 1740-1759
[5]  
Baswana S(2004)All-pairs almost shortest paths SIAM J. Comput. 33 608-631
[6]  
Sen S(undefined)-spanner constructions for general graphs undefined undefined undefined-undefined
[7]  
Chechik S(undefined)undefined undefined undefined undefined-undefined
[8]  
Langberg M(undefined)undefined undefined undefined undefined-undefined
[9]  
Peleg D(undefined)undefined undefined undefined undefined-undefined
[10]  
Roditty L(undefined)undefined undefined undefined undefined-undefined