Topological Invariants of Edge States for Periodic Two-Dimensional Models

被引:0
作者
Julio Cesar Avila
Hermann Schulz-Baldes
Carlos Villegas-Blas
机构
[1] Instituto de Matematicas,UNAM
[2] Universität Erlangen-Nürnberg,Department Mathematik
来源
Mathematical Physics, Analysis and Geometry | 2013年 / 16卷
关键词
Edge states; Bloch theory; Topological invariants; 81V70; 19L10; 82B20;
D O I
暂无
中图分类号
学科分类号
摘要
Transfer matrix methods and intersection theory are used to calculate the bands of edge states for a wide class of periodic two-dimensional tight-binding models including a sublattice and spin degree of freedom. This allows to define topological invariants by considering the associated Bott–Maslov indices which can be easily calculated numerically. For time-reversal symmetric systems in the symplectic universality class this leads to a \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathbb Z}_2$\end{document}-invariant for the edge states. It is shown that the edge state invariants are related to Chern numbers of the bulk systems and also to (spin) edge currents, in the spirit of the theory of topological insulators.
引用
收藏
页码:137 / 170
页数:33
相关论文
共 35 条
  • [1] Ando T(1989)Numerical study of symmetry effects on localization in two dimensions Phys. Rev. B40 5325-5339
  • [2] Elbau P(2002)Equality of bulk and edge Hall conductance revisited Commun. Math. Phys. 229 415-432
  • [3] Graf G-M(1996)Peculiar localized state at zigzag graphite edge J. Phys. Soc. Jpn. 65 1920-1923
  • [4] Fujita M(1982)Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential Phys. Rev. B 25 2185-2190
  • [5] Wakabayashi K(1993)The Chern number and edge states in the integer quantum hall effect Phys. Rev. Lett. 71 3697-3700
  • [6] Nakada K(2006)Topological analysis of the quantum Hall effect in graphene: Dirac-Fermi transition across van Hove singularities and edge versus bulk quantum numbers Phys. Rev. B74 205414-205430
  • [7] Kusakabe K(2005) topological order and the quantum spin Hall effect Phys. Rev. Lett. 95 146802–145805-145805
  • [8] Halperin BI(2002)Edge current channels and Chern numbers in the integer quantum Hall effect Rev. Math. Phys. 14 87-119
  • [9] Hatsugai Y(2005)Quantum Graphs II: some spectral properties of quantum and combinatorial graphs J. Phys. A38 4887-4900
  • [10] Hatsugai Y(2003)Flat bands of a tight-binding electronic system with hexagonal structure J. Phys. Soc. Jpn. 72 2015-2023