Multiple periodic solutions for a class of non-autonomous hamiltonian systems with even-typed potentials

被引:0
作者
Yu Tian
Weigao Ge
机构
[1] Beijing University of Posts and Telecommunications,School of Science
[2] Beijing Institute of Technology,Department of Applied Mathematics
来源
Journal of Dynamical and Control Systems | 2012年 / 18卷
关键词
Periodic solution; critical point; second-order Hamiltonian systems; variational approach; 35B10; 47J30; 58E05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we investigate the periodic solutions for a class of non-autonomous Hamiltonian systems. By using a decomposition technique of space and variational approaches we give new sufficient conditions for the existence of multiple periodic solutions.
引用
收藏
页码:339 / 354
页数:15
相关论文
共 29 条
[1]  
Brezis H(1991)Remarks on finding critical points Commun. Pure Appl. math. 44 939-963
[2]  
Nirenberg L(2009)Variational approach to impulsive differential equations Nonlinear Anal.: Real World Applications 10 680-690
[3]  
Nieto JJ(2000)On a three critical points theorem Arch. Math. (Basel) 75 220-226
[4]  
O’Regan D(2005)A general multiplicity theorem for certain nonlinear equations in Hilbert spaces Proc. Amer. Math. Soc. 133 3255-3261
[5]  
Ricceri B(1995)Periodic solutions of non-autonomous second order systems with γ-quasisubadditive potential J. Math. Anal. Appl. 189 671-675
[6]  
Ricceri B(1998)Existence and multiplicity of periodic solutions for nonautonomous second order systems Nonlinear Anal. TMA 32 299-304
[7]  
Tang C(1996)Periodic solutions of non-autonomous second order systems J. Math. Anal. Appl. 202 465-469
[8]  
Tang C(1998)Periodic solutions for second order systems with sublinear nonlinearity Proc. Amer. Math. Soc. 126 3263-3270
[9]  
Tang C(2002)Periodic solutions for a class of nonautonomous subquadratic second order Hamiltonian systems J. Math. Anal. Appl. 275 870-882
[10]  
Tang C(2007)Periodic solutions of non-autonomous second-order systems with a p-Laplacian Nonlinear Anal. 66 192-203