Characteristic cycles of highest weight Harish-Chandra modules

被引:2
作者
Zierau R. [1 ]
机构
[1] Mathematics Department, Oklahoma State University, Stillwater, 74078, OK
关键词
Associated variety; Characteristic cycle; Harish-Chandra module;
D O I
10.1007/s40863-018-0092-1
中图分类号
学科分类号
摘要
Characteristic cycles and leading term cycles of irreducible highest weight Harish-Chandra modules of regular integral infinitesimal character are determined. In the simply laced cases they are irreducible, but in the nonsimply laced cases they are more complicated. © 2018, Instituto de Matemática e Estatística da Universidade de São Paulo.
引用
收藏
页码:389 / 410
页数:21
相关论文
共 18 条
[1]  
Barbasch D., Vogan D., Primitive ideals and orbital integrals in complex classical groups, Math. Ann., 259, pp. 153-199, (1982)
[2]  
Barchini L., Zierau R., Characteristic cycles of highest weight Harish-Chandra modules for Sp (2 n, R), Transform. Groups, 22, 3, pp. 591-630, (2017)
[3]  
Beilinson A., Bernstein J., Localisation de g -modules, C. R. Acad. Sci. Paris, 292, pp. 15-18, (1981)
[4]  
Boe B., Fu J., Characteristic cycles in hermitian symmetric spaces, Can. J. Math., 49, 3, pp. 417-467, (1997)
[5]  
Borho W., Brylinski J.-L., Differential operators on homogeneous spaces. III, Invent. Math., 80, pp. 1-68, (1985)
[6]  
Carter R.W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Pure and Applied Mathematics, (1985)
[7]  
Collingwood D., McGovern W., Nilpotent Orbits in Semisimple Lie Algebras, (1993)
[8]  
Evens S., Mirkovic I., Characteristic cycles for the loop Grassmannian and nilpotent orbits, Duke Math. J., 97, pp. 109-126, (1999)
[9]  
Fulton W., Pragacz P., Schubert Varieties and Degeneracy Loci. Lecture Notes in Mathematics, 1689, (1998)
[10]  
Hecht H., Milicic D., Schmid W., Wolf J.A., Localization and standard modules for real semisimple Lie groups. I. The duality theorem, Invent. Math., 90, 2, pp. 297-332, (1987)