Optimal control of rigidity parameters of thin inclusions in composite materials

被引:0
作者
A. M. Khludnev
L. Faella
C. Perugia
机构
[1] Novosibirsk State University,Lavrentyev Institute of Hydrodynamics of SB RAS
[2] Universita di Cassino e del Lazio Meridionale,DIEI Dipartimento di Ingegneria Elettrica e dell’Informazione “M. Scarano”
[3] Universita del Sannio,Dipartimento di Scienze e Tecnologie
来源
Zeitschrift für angewandte Mathematik und Physik | 2017年 / 68卷
关键词
Thin inclusion; Rigid inclusion; Optimal control; Elastic body; Crack; Nonpenetration condition; 35J88; 49J20;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, an equilibrium problem for an elastic body with a thin elastic and a volume rigid inclusion is analyzed. It is assumed that the thin inclusion conjugates with the rigid inclusion at a given point. Moreover, a delamination of the thin inclusion is assumed. Inequality type boundary conditions are considered at the crack faces to prevent a mutual penetration between the faces. A passage to the limit is justified as the rigidity parameter of the thin inclusion goes to infinity. The main goal of the paper is to analyze an optimal control problem with a cost functional characterizing a deviation of the displacement field from a given function. A rigidity parameter of the thin inclusion serves as a control function. An existence theorem to this problem is proved.
引用
收藏
相关论文
共 55 条
  • [1] Amstutz S(2010)A penalty method for topology optimization subject to a pointwise state constraint ESAIM Control Optim. Calc. Var. 16 523-544
  • [2] Ciarlet PG(1989)Junctions between three dimensional and two dimensional linearly elastic structures J. Math. Pures Appl. 6 261-295
  • [3] Le Dret H(2015)Optimal control for a second-order linear evolution problem in a domain with oscillating boundary Complex Var. Elliptic Equ. 60 1392-1410
  • [4] Nzengwa R(2012)Homogenization of quasilinear optimal control problem involving a thick multilevel junction of type 3: 2: 1 ESAIM Control Optim. Calc. Var. 18 583-610
  • [5] De Maio U(2006)Junction in a thin multidomain for a forth order problem Math. Models Methods Appl. Sci. 16 1887-1918
  • [6] Faella L(2007)Junction of elastic plates and beams ESAIM Control Optim. Calc. Var. 13 419-457
  • [7] Perugia C(2007)Application of invariant integrals to the problems of defect identification Int. J. Fract. 147 45-54
  • [8] Durante T(2008)On the control of crack growth in elastic media C. R. Mec. 336 422-427
  • [9] Melnyk TA(2016)On delaminated thin Timoshenko inclusions inside elastic bodies Math. Meth. Appl. Sci. 39 4980-4993
  • [10] Gaudiello A(2012)Optimal control of inclusion and crack shapes in elastic bodies J. Opt. Theory Appl. 155 54-78