Polynomial interpolation in several variables

被引:0
作者
Mariano Gasca
Thomas Sauer
机构
[1] University of Zaragoza,Department of Applied Mathematics
[2] Universität Erlangen–Nürnberg,Mathematisches Institut
来源
Advances in Computational Mathematics | 2000年 / 12卷
关键词
interpolation; multivariate polynomials; Newton approach; divided differences; Gröbner bases; H-bases;
D O I
暂无
中图分类号
学科分类号
摘要
This is a survey of the main results on multivariate polynomial interpolation in the last twenty-five years, a period of time when the subject experienced its most rapid development. The problem is considered from two different points of view: the construction of data points which allow unique interpolation for given interpolation spaces as well as the converse. In addition, one section is devoted to error formulas and another to connections with computer algebra. An extensive list of references is also included.
引用
收藏
相关论文
共 93 条
  • [1] Aitken A.G.(1932)On interpolation by iteration of proportional parts without the use of differences Proc. Edinburgh Math. Soc. 3 56-76
  • [2] Biermann O.(1903)Ñber näherungsweise Kubaturen, Monatsh Math. Phys. 14 211-225
  • [3] Bos L.(1991)On certain configurations of points in R SIAM J. Approx. Theory 64 271-280
  • [4] Brezinski G.(1980) which are unisolvent for polynomial interpolation BIT 80 444-451
  • [5] Buchberger B.(1970)The Mühlbach–Neville–Aitken algorithm and some extensions Aequationes Math 4 374-383
  • [6] Busch J.R.(1985)Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems Numer Anal. 22 107-113
  • [7] Busch J.R.(1990)Osculatory interpolation in R Rev. Un. Mat. Argentina 36 33-38
  • [8] Carnicer J.M.(1990), SIAM J Math. Comp. 54 231-244
  • [9] Gasca M.(1980)A note on Lagrange interpolation in R2 Math. Z 174 263-279
  • [10] Cavaretta A.L.(1977)Evaluation of multivariate polynomials and their derivatives Numer. Anal. 14 735-743