Extensions of Invariant Signatures for Object Recognition

被引:0
作者
Daniel J. Hoff
Peter J. Olver
机构
[1] University of California,Department of Mathematics
[2] San Diego,School of Mathematics
[3] University of Minnesota,undefined
来源
Journal of Mathematical Imaging and Vision | 2013年 / 45卷
关键词
Object recognition; Plane curve; Rigid equivalence; Curvature; Vertex; Bivertex arc; Differential invariant; Euclidean signature;
D O I
暂无
中图分类号
学科分类号
摘要
A refinement of the method of differential invariant signatures for object recognition is presented. The value of the method lies in its compromise between local and global identifying properties, thereby allowing us to distinguish non-congruent curves whose Euclidean signatures have identical trace.
引用
收藏
页码:176 / 185
页数:9
相关论文
共 20 条
  • [1] Boutin M.(2000)Numerically invariant signature curves Int. J. Comput. Vis. 40 235-248
  • [2] Calabi E.(1998)Differential and numerically invariant signature curves applied to object recognition Int. J. Comput. Vis. 26 107-135
  • [3] Olver P.J.(1999)Moving coframes. II. Regularization and theoretical foundations Acta Appl. Math. 55 127-208
  • [4] Shakiban C.(1994)Möbius energy of knots and unknots Ann. Math. 139 1-50
  • [5] Tannenbaum A.(1984)Parts of recognition Cognition 18 65-96
  • [6] Haker S.(2009)Invariant signature of closed planar curves J. Math. Imaging Vis. 35 68-85
  • [7] Fels M.(1986)Encoding contour shape by curvature extrema J. Opt. Soc. Am. A 3 1483-1491
  • [8] Olver P.J.(1997)3D part segmentation using simulated electrical charge distributions IEEE Trans. Pattern Anal. Mach. Intell. 19 1223-1235
  • [9] Freedman M.H.(undefined)undefined undefined undefined undefined-undefined
  • [10] He Z.-X.(undefined)undefined undefined undefined undefined-undefined