Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats

被引:0
|
作者
Ji Wei Song
Kun Li
Zhuo Wen Liang
Chen Dai
Xue Feng Shen
Yu Ze Gong
Shuang Wang
Xue Yu Hu
Zhe Wang
机构
[1] Fourth Military Medical University,Department of Orthopedics, Xijing Hospital
[2] Fourth Military Medical University,Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment
[3] Northwest University,Department of Physics, Institute of Photonics and Photon
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Macrophages and resident microglia play an import role in the secondary neuroinflammation response following spinal cord injury. Reprogramming of macrophage/microglia polarization is an import strategy for spinal cord injury restoration. Low-level laser therapy (LLLT) is a noninvasive treatment that has been widely used in neurotrauma and neurodegenerative diseases. However, the influence of low-level laser on polarization of macrophage/microglia following spinal cord injury remains unknown. The present study applied low-level laser therapy on a crush spinal cord injury rat model. Using immunofluorescence, flow cytometry, RT-qPCR, and western blot assays, we found that low-level laser therapy altered the polarization state to a M2 tendency. A greater number of neurons survived in the pare injury site, which was accompanied by higher BBB scores in the LLLT group. Furthermore, low-level laser therapy elevated expression of interleukin 4 (IL-4) and interleukin 13 (IL-13). Results from this study show that low-level laser therapy has the potential for reducing inflammation, regulating macrophage/microglia polarization, and promoting neuronal survival. These beneficial effects demonstrate that low-level laser therapy may be an effective candidate for clinical treatment of spinal cord injury.
引用
收藏
相关论文
共 50 条
  • [31] Salidroside attenuates neuroinflammation and improves functional recovery after spinal cord injury through microglia polarization regulation
    Wang, Chenggui
    Wang, Qingqing
    Lou, Yiting
    Xu, Jianxiang
    Feng, Zhenhua
    Chen, Yu
    Tang, Qian
    Zheng, Gang
    Zhang, Zengjie
    Wu, Yaosen
    Tian, Naifeng
    Zhou, Yifei
    Xu, Huazi
    Zhang, Xiaolei
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2018, 22 (02) : 1148 - 1166
  • [32] BRD4 inhibition attenuates inflammatory response in microglia and facilitates recovery after spinal cord injury in rats
    Wang, Jianle
    Chen, Jiaoxiang
    Jin, Haiming
    Lin, Dongdong
    Chen, Yu
    Chen, Ximiao
    Wang, Ben
    Hu, Sunli
    Wu, Yan
    Wu, Yaosen
    Zhou, Yifei
    Tian, Naifeng
    Gao, Weiyang
    Wang, Xiangyang
    Zhang, Xiaolei
    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2019, 23 (05) : 3214 - 3223
  • [33] ADAM17-deficiency on microglia but not on macrophages promotes phagocytosis and functional recovery after spinal cord injury
    Sommer, Daniela
    Corstjens, Inge
    Sanchez, Selien
    Dooley, Dearbhaile
    Lemmens, Stefanie
    Van Broeckhoven, Jana
    Bogie, Jeroen
    Vanmierlo, Tim
    Vidal, Pia M.
    Rose-John, Stefan
    Gou-Fabregas, Myriam
    Hendrix, Sven
    BRAIN BEHAVIOR AND IMMUNITY, 2019, 80 : 129 - 145
  • [34] Exercise Training Promotes Functional Recovery after Spinal Cord Injury
    Fu, Juanjuan
    Wang, Hongxing
    Deng, Lingxiao
    Li, Jianan
    NEURAL PLASTICITY, 2016, 2016
  • [35] Chondroitinase ABC promotes functional recovery after spinal cord injury
    Bradbury, EJ
    Moon, LDF
    Popat, RJ
    King, VR
    Bennett, GS
    Patel, PN
    Fawcett, JW
    McMahon, SB
    NATURE, 2002, 416 (6881) : 636 - 640
  • [36] Chondroitinase ABC promotes functional recovery after spinal cord injury
    Elizabeth J. Bradbury
    Lawrence D. F. Moon
    Reena J. Popat
    Von R. King
    Gavin S. Bennett
    Preena N. Patel
    James W. Fawcett
    Stephen B. McMahon
    Nature, 2002, 416 : 636 - 640
  • [37] TAZ Induces Migration of Microglia and Promotes Neurological Recovery After Spinal Cord Injury
    Hu, Xuyang
    Huang, Jinxin
    Li, Yiteng
    Dong, Lei
    Chen, Yihao
    Ouyang, Fangru
    Li, Jianjian
    Li, Ziyu
    Jing, Juehua
    Cheng, Li
    FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [38] Fisetin Promotes Functional Recovery after Spinal Cord Injury by Inhibiting Microglia/Macrophage M1 Polarization and JAK2/STAT3 Signaling Pathway
    Ji, Rong
    Hao, Zhizhong
    Wang, Hao
    Su, Yujing
    Yang, Wenzhi
    Li, Xingfan
    Duan, Linyan
    Guan, Fangxia
    Ma, Shanshan
    Journal of Agricultural and Food Chemistry, 1600, 72 (32): : 17964 - 17976
  • [39] Fisetin Promotes Functional Recovery after Spinal Cord Injury by Inhibiting Microglia/Macrophage M1 Polarization and JAK2/STAT3 Signaling Pathway
    Ji, Rong
    Hao, Zhizhong
    Wang, Hao
    Su, Yujing
    Yang, Wenzhi
    Li, Xingfan
    Duan, Linyan
    Guan, Fangxia
    Ma, Shanshan
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2024, 72 (32) : 17964 - 17976
  • [40] Stimulation of autophagy promotes functional recovery in diabetic rats with spinal cord injury
    Zhou, Kai-liang
    Zhou, Yi-fei
    Wu, Kai
    Tian, Nai-feng
    Wu, Yao-sen
    Wang, Yong-li
    Chen, De-heng
    Zhou, Bin
    Wang, Xiang-yang
    Xu, Hua-zi
    Zhang, Xiao-lei
    SCIENTIFIC REPORTS, 2015, 5