INVERTIBILITY OF FOURIER CONVOLUTION OPERATORS WITH PC SYMBOLS ON VARIABLE LEBESGUE SPACES WITH KHVEDELIDZE WEIGHTS

被引:0
作者
Fernandes C. [1 ,2 ]
Karlovych O. [1 ,2 ]
Medalha S. [2 ]
机构
[1] Centro de Matemática e Aplicações (CMA), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Caparica
[2] Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, Caparica
关键词
Fourier convolution operator; Fourier multiplier; Invertibility; Khvedelidze weight; Piecewise continuous function; Variable Lebesgue space;
D O I
10.1007/s10958-022-05897-7
中图分类号
学科分类号
摘要
Let p(·) : R→ (1 , ∞) be a sufficiently regular variable exponent and ϱ be a Khvedelidze weight on R. Suppose that a function a belongs to the algebra PCp(·),ϱ of piecewise continuous Fourier multipliers on the weighted variable Lebesgue space Lp(·)(R, ϱ). We show that the Fourier convolution operator W(a) = F- 1aF is invertible on the space Lp(·)(R, ϱ) if and only if its symbol a is invertible in L∞(R). © 2022, The Author(s), under exclusive licence to Springer Nature Switzerland AG.
引用
收藏
页码:419 / 434
页数:15
相关论文
共 27 条
[1]  
Bennett C., Sharpley R., Interpolation of Operators, Volume 129 of Pure and Applied Mathematics, (1988)
[2]  
Berkson E., Gillespie T.A., Multipliers for weighted L p -spaces, transference, and the q -variation of functions, Bull. Sci. Math., 122, 6, pp. 427-454, (1998)
[3]  
Bottcher A., Karlovich Y.I., Spitkovsky I.M., Convolution Operators and Factorization of Almost Periodic Matrix Functions, Volume 131 of Operator Theory: Advances and Applications., (2002)
[4]  
Elementary Theory, Translated from the 1976 French Original [MR0580296] by Philip Spain, (2004)
[5]  
Brudnyi Y.A., Krugljak N.Y., Interpolation Functors and Interpolation Spaces. Vol. I, Volume 47 of North-Holland Mathematical Library, (1991)
[6]  
Calderon A.-P., Intermediate spaces and interpolation, the complex method, Studia Math, 24, pp. 113-190, (1964)
[7]  
Cruz-Uribe D., Diening L., Hasto P., The maximal operator on weighted variable Lebesgue spaces, Fract. Calc. Appl. Anal., 14, 3, pp. 361-374, (2011)
[8]  
Cruz-Uribe D., Fiorenza A., Neugebauer C.J., Weighted norm inequalities for the maximal operator on variable Lebesgue spaces, J. Math. Anal. Appl., 394, 2, pp. 744-760, (2012)
[9]  
Cruz-Uribe D.V., Fiorenza A., Variable Lebesgue spaces. Applied and Numerical Harmonic Analysis, (2013)
[10]  
Diening L., Harjulehto P., Hasto P., Ruzicka M., Lebesgue and Sobolev Spaces with Variable Exponents, Volume 2017 of Lecture Notes in Mathematics, (2011)