Convergence of Solutions of General Dispersive Equations Along Curve

被引:0
作者
Yong Ding
Yaoming Niu
机构
[1] Beijing Normal University,School of Mathematical Sciences
[2] Ministry of Education,Laboratory of Mathematics and Complex Systems (BNU)
[3] Baotou Teachers’ College,Faculty of Mathematics
来源
Chinese Annals of Mathematics, Series B | 2019年 / 40卷
关键词
estimate; Global maximal operator; Dispersive equation; Curve; 42B20; 42B25; 35S10;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the authors give the local L2 estimate of the maximal operator Sϕ,γ*\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\phi ,\gamma }^ * $$\end{document} of the operator family {St,ϕ, γ} defined initially by St,ϕ,γf(x):=eitϕ(−Δ)f(γ(x,t))=(2π)−1∫ℝeiγ(x,t)⋅ξ+itϕ(|ξ|)f^(ξ)dξ,f∈S(ℝ),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${S_{t,\phi ,\gamma }}f(x): = {{\rm{e}}^{{\rm{i}}\,t\phi (\sqrt { - \Delta } )}}f(\gamma (x,t)) = {(2\pi )^{ - 1}}\int_\mathbb{R} {{{\rm{e}}^{{\rm{i}}\gamma (x,t) \cdot \xi + {\rm{i}}\,t\phi ({\rm{|}}\xi {\rm{|}})}}} \hat f(\xi ){\rm{d}}\xi ,\;\;\;\;\;\;\;\;f \in {\cal S}(\mathbb{R}),$$\end{document} which is the solution (when {itn} = 1) of the following dispersive equations (*) along a curve {itγ}: {i∂tu+ϕ(−Δ)u=0,(x,t)∈ℝn×ℝ,u(x,0)=f(x),f∈S(ℝn),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\matrix{ {{\rm{i}}{\partial _t}u + \phi (\sqrt { - {\rm{\Delta }}} )u = 0,} \hfill \;\;\;\;\; {(x,t) \in \mathbb{R}{^n} \times \mathbb{R},} \hfill \cr {u(x,0) = f(x),} \hfill \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; {f \in {\cal S}({\mathbb{R}^n}),} \hfill \cr } } \right.$$\end{document} where {itϕ}: ℝ+ → ℝ satisfies some suitable conditions and ϕ(−Δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi (\sqrt { - {\rm{\Delta }}} )$$\end{document} is a pseudo-differential operator with symbol {itϕ}(∣{itξ}∣). As a consequence of the above result, the authors give the pointwise convergence of the solution (when {itn} = 1) of the equation (*) along curve {itγ}. Moreover, a global {itL}2 estimate of the maximal operator Sϕ,γ∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_{\phi ,\gamma }^ * $$\end{document} is also given in this paper.
引用
收藏
页码:363 / 388
页数:25
相关论文
共 35 条
  • [1] Bourgain J(2013)On the Schrödinger maximal functionin higher dimension Proc. Steklov Inst. Math. 280 46-60
  • [2] Cho C(2012)Problems on pointwise convergence of solutions to the Schrödinger equation J. Fourier Anal. Appl. 18 972-994
  • [3] Lee S(2013)Strichartz estimates in spherical coordinates Indiana Univ. Math. J. 62 991-1020
  • [4] Vargas A(2007)On small amplitude solutions to the generalized Boussinesq equations Discrete Contin. Dyn. Syst. 17 691-711
  • [5] Cho Y(2017)Weighted maximal estimates along curve associated with dispersive equations Anal Appl. 15 225-240
  • [6] Lee S(2004)Mean-Field limit of quantum Bose gases and nonlinear Hartree equation Sémin. Equ. Dériv. Partielles 19 1-26
  • [7] Cho Y(2008)Decay estimates for a class of wave equations J. Funct. Anal. 254 1642-1660
  • [8] Ozawa T(2014)Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations J. Anal. Math. 124 1-38
  • [9] Ding Y(2013)Nondispersive solutions to the Arch. Rational Mech. Anal. 209 61-129
  • [10] Niu Y M(2002)-critical half-wave equation Phys. R. E. 62 3135-3145