Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon–Nikodym Property

被引:1
作者
Jeff Cheeger
Bruce Kleiner
机构
[1] Courant Institute of Mathematical Sciences,Mathematics Department
[2] Yale University,undefined
来源
Geometric and Functional Analysis | 2009年 / 19卷
关键词
differentiability; Lipschitz function; Banach space; Radon-Nikodym property; metric measure space; doubling measure; Poincaré inequality; minimal upper gradient; 58C20; 30L05; 30L99;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the differentiability of Lipschitz maps X → V, where X denotes a PI space, i.e. a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon–Nikodym Property (RNP). As a consequence, we obtain a bi-Lipschitz nonembedding theorem for RNP targets. The differentiation theorem depends on a new specification of the differentiable structure for PI spaces involving directional derivatives in the direction of velocity vectors to rectifiable curves. We give two different proofs of this, the second of which relies on a new characterization of the minimal upper gradient. There are strong implications for the infinitesimal structure of PI spaces which will be discussed elsewhere.
引用
收藏
页码:1017 / 1028
页数:11
相关论文
共 15 条
  • [1] Bourdon M.(1999)Poincaré inequalities and quasiconformal structure on the boundary of some hyperbolic buildings Proc. Amer. Math. Soc. 127 2315-2324
  • [2] Pajot H.(1999)Differentiability of Lipschitz functions on metric measure spaces Geom. Funct. Anal. 9 428-517
  • [3] Cheeger J.(1996)From local to global in quasiconformal structures Proc. Nat. Acad. Sci. USA 93 554-556
  • [4] Heinonen J.(2001)Sobolev classes of Banach space-valued functions and quasiconformal mappings J. Anal. Math. 85 87-139
  • [5] Koskela P.(1994)Rectifiable metric spaces: local structure and regularity of the Hausdorff measure Proc. Amer. Math. Soc. 121 113-123
  • [6] Heinonen J.(2000)Ahlfors Geom. Funct. Anal. 10 111-123
  • [7] Koskela P.(1980)-regular spaces with arbitrary Proc. Amer. Math. Soc. 78 40-42
  • [8] Shanmugalingam N.(2001) >  1 admitting weak Poincaré inequality Comm. Anal. Geom. 9 951-982
  • [9] Tyson J.T.(2000)The large scale geometry of nilpotent Lie groups Rev. Mat. Iberoamericana 16 243-279
  • [10] Kirchheim B.(undefined)Newtonian spaces: an extension of Sobolev spaces to metric measure spaces undefined undefined undefined-undefined