A note on AP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AP_3$$\end{document}-covering sequences

被引:0
作者
Jin-Hui Fang
机构
[1] Nanjing University of Information Science and Technology,Department of Mathematics
关键词
-covering sequence; Arithmetic progression; Stanley sequence; 11B75;
D O I
10.1007/s10998-020-00350-1
中图分类号
学科分类号
摘要
For a given integer k≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\ge 3$$\end{document}, a sequence A of nonnegative integers is called an APk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AP_k$$\end{document}-covering sequence if there exists an integer n0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n_0$$\end{document} such that, if n>n0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n>n_0$$\end{document}, then there exist a1∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_1\in A$$\end{document}, …\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ldots $$\end{document}, ak-1∈A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_{k-1}\in A$$\end{document}, a1<a2<⋯<ak-1<n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_1<a_2<\cdots<a_{k-1}<n$$\end{document} such that a1,a2,…,ak-1,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a_1,a_2,\ldots ,a_{k-1},n$$\end{document} form a k-term arithmetic progression. For k=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k=3$$\end{document}, Kiss, Sándor and Yang observed that lim supn→∞A(n)/n≥1.77\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{n\rightarrow \infty } A(n)/\sqrt{n}\ge 1.77$$\end{document} hold for any AP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AP_3$$\end{document}-covering sequence A. They also proved that there exists an AP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AP_3$$\end{document}-covering sequence A such that lim supn→∞A(n)/n≤36\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{n\rightarrow \infty } A(n)/\sqrt{n}\le 36$$\end{document}. Recently, Chen proved that there exists an AP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AP_3$$\end{document}-covering sequence A such that lim supn→∞A(n)/n=15=3.87…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{n\rightarrow \infty } A(n)/\sqrt{n}=\sqrt{15}=3.87\ldots $$\end{document}. In this note, we prove that there exists an AP3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$AP_3$$\end{document}-covering sequence A such that lim supn→∞A(n)/n=8/5=3.57…\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\limsup _{n\rightarrow \infty } A(n)/\sqrt{n}=8/\sqrt{5}=3.57\ldots $$\end{document}.
引用
收藏
页码:67 / 70
页数:3
相关论文
共 14 条
[1]  
Chen YG(2018)On C. R. Math. Acad. Sci. Paris 356 121-124
[2]  
Dai LX(2013)-covering sequences Publ. Math. (Debr.) 82 91-95
[3]  
Chen YG(1999)On the counting function of Stanley Sequences Discrete Math. 200 119-135
[4]  
Erdős P(1979)Greedy algorithm, arithmetic progressions, subset sums and divisibility Math. Comput. 33 1353-1359
[5]  
Lev V(2018)Sets of integers with no long arithmetic progressions generated by the greedy algorithm Acta Math. Hung. 154 501-510
[6]  
Rauzy G(2011)On generalized Stanley sequences Discrete Math. 311 560-562
[7]  
Sándor C(undefined)On the growth of the counting function of Stanley sequences undefined undefined undefined-undefined
[8]  
Sárkőzy A(undefined)undefined undefined undefined undefined-undefined
[9]  
Gerver J(undefined)undefined undefined undefined undefined-undefined
[10]  
Ramsey LT(undefined)undefined undefined undefined undefined-undefined