Examples of Non-Semisimple Hopf Algebra Actions on Artin-Schelter Regular Algebras

被引:0
作者
Hui-Xiang Chen
Ding-Guo Wang
James J. Zhang
机构
[1] Yangzhou University,School of Mathematical Sciences
[2] Qufu Normal University,School of Mathematical Sciences
[3] University of Washington,Department of Mathematics
来源
Algebras and Representation Theory | 2023年 / 26卷
关键词
Hopf algebra action; Artin-Schelter regular algebra; Indecomposable module; Green ring; 16T05; 16W22;
D O I
暂无
中图分类号
学科分类号
摘要
Let 𝕜\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\Bbbk $\end{document} be a base field of characteristic p > 0 and let U be the restricted enveloping algebra of a 2-dimensional nonabelian restricted Lie algebra. We classify all inner-faithful U-actions on noetherian Koszul Artin-Schelter regular algebras of global dimension up to three.
引用
收藏
页码:717 / 752
页数:35
相关论文
共 73 条
  • [1] Artin M(1987)Graded algebras of global dimension 3 Adv. Math. 66 171-216
  • [2] Schelter W(1991)Modules over regular algebras of dimension 3 Invent. Math. 106 335-388
  • [3] Artin M(1978)The diamond lemma for ring theory Adv. Math. 29 178-218
  • [4] Tate J(2010)Generalizations of graded Clifford algebras and of complete intersections J. London Math. Soc. (2) 81 91-112
  • [5] Van den Bergh M(2016)Quantum binary polyhedral groups and their actions on quantum planes J. Reine Angew. Math. 719 211-252
  • [6] Bergman GM(2018)Mckay Correspondence for semisimple Hopf actions on regular graded algebras, I J. Algebra 508 512-538
  • [7] Cassidy T(2019)Mckay Correspondence for semisimple Hopf actions on regular graded algebras, II J. Noncommut. Geometry 13 87-114
  • [8] Vancliff M(2014)The Green ring of Drinfeld double d(h4) Algebr. Represent. Theory 17 1457-1483
  • [9] Chan K(2002)Finite-dimensional representations of a quantum double J. Algebra 251 751-789
  • [10] Chan K(2014)The Green rings of Taft algebras Proc. Amer. Math. Soc. 142 765-775