Maximal Operators of Vilenkin–Nörlund Means

被引:0
作者
L.-E. Persson
G. Tephnadze
P. Wall
机构
[1] Luleå University of Technology,Department of Engineering Sciences and Mathematics
[2] Narvik University College,Department of Mathematics, Faculty of Exact and Natural Sciences
[3] Tbilisi State University,undefined
来源
Journal of Fourier Analysis and Applications | 2015年 / 21卷
关键词
Vilenkin system; Vilenkin group; Nörlund means; Martingale Hardy space; spaces; Maximal operator; Vilenkin–Fourier series; 42C10; 42B25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove and discuss some new Hp,weak-Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( H_{p},weak-L_{p}\right) $$\end{document} type inequalities of maximal operators of Vilenkin–Nörlund means with monotone coefficients. We also apply these results to prove a.e. convergence of such Vilenkin–Nörlund means. It is also proved that these results are the best possible in a special sense. As applications, both some well-known and new results are pointed out.
引用
收藏
页码:76 / 94
页数:18
相关论文
共 49 条
[1]  
Blahota I(2006)Maximal operators of Fejér means of Vilenkin–Fourier series, JIPAM J. Inequal. Pure Appl. Math 7 149-296
[2]  
Gát G(2007)Maximal operators of Fejér means of double Vilenkin–Fourier series Colloq. Math. 107 287-17
[3]  
Goginava U(2008)Norm summability of Nö rlund logarithmic means on unbounded Vilenkin groups Anal. Theory Appl. 24 1-591
[4]  
Blahota I(1955)Cesáro summability of Walsh–Fourier series Proc. Nat. Acad. Sci. USA 41 558-116
[5]  
Gát G(1979)A maximal inequality for Proc. Amer. Math. Soc. 77 111-149
[6]  
Goginava U(1993)-functions on a generalized Walsh–Paley group Acta Math. Hung. 61 131-506
[7]  
Blahota I(2006)Investigations of certain operators with respect to the Vilenkin system Acta Math. Sin. Engl. Ser. 2 497-916
[8]  
Gát G(2006)Uniform and L-convergence of logarithmic means of Walsh–Fourier series Acta Math. Sin. Engl. Ser. 25 903-83
[9]  
Fine J(2009)On the divergence of Nörlund logarithmic means of Walsh–Fourier series, (English summary) Acta Math. Hung. 125 65-20
[10]  
Fujii N(2002)A weak type inequality for the maximal operator of J. Approx. Theory 115 9-28