Frobenius Extensions and Tilting Complexes

被引:0
作者
Hiroki Abe
Mitsuo Hoshino
机构
[1] University of Tsukuba,Institute of Mathematics
来源
Algebras and Representation Theory | 2008年 / 11卷
关键词
Frobenius extension; Tilting complex; Derived equivalence; Primary 16S99; Secondary 18E30;
D O I
暂无
中图分类号
学科分类号
摘要
Let n ≥ 1 be an integer and π a permutation of I = {1, ⋯ ,n}. For any ring R, we provide a systematic construction of rings A which contain R as a subring and enjoy the following properties: (a) 1 = ∑ i ∈ Iei with the ei orthogonal idempotents; (b) eix = xei for all i ∈ I and x ∈ R; (c) eiAej ≠ 0 for all i, j ∈ I; (d) eiAA ≇ ejAA unless i = j; (e) every eiAei is a local ring whenever R is; (f) eiAA ≅ HomR(Aeπ(i),RR) and AAeπ(i) ≅ AHomR(eiA,RR) for all i ∈ I; and (g) there exists a ring automorphism η ∈ Aut(A) such that η(ei) = eπ(i) for all i ∈ I. Furthermore, for any nonempty π-stable subset J of I, the mapping cone of the multiplication map \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\bigoplus_{i \in J} Ae_{i} \otimes_{R} e_{i}A_{A} \to A_{A}$\end{document} is a tilting complex.
引用
收藏
页码:215 / 232
页数:17
相关论文
共 13 条
  • [1] Hoshino M.(2000)Strongly quasi-Frobenius rings Comm. Algebra 28 3585-3599
  • [2] Hoshino M.(2002)Tilting complexes defined by idempotents Comm. Algebra 30 83-100
  • [3] Kato Y.(1954)Grundlagen einer Theorie der Frobeniuserweiterungen Math. Ann. 127 453-474
  • [4] Kasch F.(1960)Projective Frobenius-Erweiterungen Sitzungsber. Heidelb. Akad. Wiss., Math.-Naturwiss. 61 89-109
  • [5] Kasch F.(1975)Über eine Klasse von Artin Ringen II Arch. Math. 26 23-35
  • [6] Kupisch H.(1964)Quasi-Frobenius-Erweiterungen Math. Z. 85 345-368
  • [7] Müller B.J.(1960)On Frobenius extensions I Nagoya Math. J. 17 89-110
  • [8] Nakayama T.(1961)On Frobenius extensions II Nagoya Math. J. 19 127-148
  • [9] Tsuzuku T.(1989)Morita theory for derived categories J. London Math. Soc. 2 39 436-456
  • [10] Nakayama T.(1989)Derived categories and stable equivalence J. Pure Appl. Algebra 61 303-317