Localizable invariants of combinatorial manifolds and Euler characteristic

被引:0
作者
Li Yu
机构
[1] Nanjing University,Department of Mathematics and IMS
来源
Archiv der Mathematik | 2014年 / 102卷
关键词
57R05; 57R20; 57Q99; Combinatorial manifold; Localizable invariant; Euler characteristic; Local formula;
D O I
暂无
中图分类号
学科分类号
摘要
It is shown that if a real-valued PL-invariant of closed combinatorial manifolds admits a local formula that depends only on the f-vector of the link of each vertex, then the invariant must be a constant times the Euler characteristic.
引用
收藏
页码:191 / 200
页数:9
相关论文
共 5 条
[1]  
Gaifullin A. A.(2005)Computation of characteristic classes of a manifold from a triangulization of it Uspekhi Matem. nauk 60 37-66
[2]  
Gaifullin A. A.(2005)Computation of characteristic classes of a manifold from a triangulization of it, English transl. Russian Math. Surveys 60 615-644
[3]  
Klee V.(1964)A combinatorial analogue of Poincaré’s duality theorem Canad. J. Math. 16 517-531
[4]  
Roberts J.(2002)Unusual formulae for the Euler characteristic J. Knot Theory Ramifications 11 793-796
[5]  
Yu L.(2010)A property that characterizes Euler characteristic among invariants of combinatorial manifolds Adv. Math. 225 794-804