Vertex-antimagic labelings of regular graphs

被引:0
作者
Ali Ahmad
Kashif Ali
Martin Bača
Petr Kovář
Andrea Semaničová-Feňovčíková
机构
[1] Jazan University,College of Computer Science and Information Systems
[2] COMSATS Institute of Information Technology,Faculty of Mathematics
[3] Technical University,Department of Applied Mathematics and Informatics
[4] VŠB-Technical University of Ostrava,Department of Applied Mathematics
来源
Acta Mathematica Sinica, English Series | 2012年 / 28卷
关键词
Super vertex-antimagic total labeling; vertex-antimagic edge labeling; regular graph; 05C78;
D O I
暂无
中图分类号
学科分类号
摘要
Let G = (V,E) be a finite, simple and undirected graph with p vertices and q edges. An (a, d)-vertex-antimagic total labeling of G is a bijection f from V (G) ∪ E(G) onto the set of consecutive integers 1, 2, …, p + q, such that the vertex-weights form an arithmetic progression with the initial term a and difference d, where the vertex-weight of x is the sum of the value f(x) assigned to the vertex x together with all values f(xy) assigned to edges xy incident to x. Such labeling is called super if the smallest possible labels appear on the vertices.
引用
收藏
页码:1865 / 1874
页数:9
相关论文
共 51 条
  • [1] Li H.(2010)Hamiltonicity of 4-connected graphs Acta Mathematica Sinica, English Series 26 699-710
  • [2] Tian F.(2010)Edge-pancyclicity and Hamiltonian connectivity of twisted cubes Acta Mathematica Sinica, English Series 26 1315-1322
  • [3] Xu Z. X.(2010)Smallest close to regular bipartite graphs without an almost perfect matching Acta Mathematica Sinica, English Series 26 1403-1412
  • [4] Xu M.(1996)On ( Ars Combin. 42 129-149
  • [5] Volkmann L.(2004))-antimagic parachutes J. Graph Theory 47 297-309
  • [6] Zingsem A.(2003)Dense graphs are antimagic Discuss. Math. Graph Theory 23 67-83
  • [7] Bodendiek R.(2002)Vertex-antimagic total labelings of graphs Utilitas Math. 61 68-76
  • [8] Walther G.(2001)Vertex-magic total labelings of graphs Bull. Inst. Combin. Appl. 33 68-76
  • [9] Alon N.(2005)Vertex-magic total labelings of complete graphs Discrete Math. 305 240-249
  • [10] Kaplan G.(2007)Vertex-magic total labeling of odd complete graphs Discrete Math. 307 2525-2534