The Central Limit Theorem for Random Dynamical Systems

被引:0
作者
Katarzyna Horbacz
机构
[1] University of Silesia,Department of Mathematics
来源
Journal of Statistical Physics | 2016年 / 164卷
关键词
Central limit theorem; Markov operators; Invariant measures; 60F05; 60J05; 60J25; 37A25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider random dynamical systems with randomly chosen jumps. The choice of deterministic dynamical system and jumps depends on a position. The Central Limit Theorem for random dynamical systems is established.
引用
收藏
页码:1261 / 1291
页数:30
相关论文
共 55 条
[1]  
Barnsley MF(1988)Invariant measures arising from iterated function systems with place dependent probabilities Ann. Inst. H. Poincaré 24 367-394
[2]  
Demko SG(2015)Qualitative properties of certain piecewise deterministic Markov processes Ann. de lIHP B 51 1040-1075
[3]  
Elton JH(2006)Degenerate convergence of semigroups related to a model of eukaryotic gene expression Semigr Forum 73 343-366
[4]  
Geronimo JS(2015)Exponential ergodicity for Markov processes with random switching Bernoulli 21 505-536
[5]  
Benaim M(1984)On the stability of the cells size distribution J. Math. Biol. 19 227-248
[6]  
Le Borgne S(1953)Convergence de la réparition empirigue vers la réparition théorétique Ann. Sci. École Norm. Sup. 70 267-285
[7]  
Malrieu F(1969)Random evolutions, Markov chains and systems of partial differential equations Proc. Nat. Acad. Sci USA 62 305-308
[8]  
Zitt P-A(2002)Exponential mixing properties of stochastic PDEs through asymptotic coupling Probab. Theory Relat. Fields 124 345-380
[9]  
Bobrowski A(2016)Limit theorems for some Markov operators J. Math. Anal. Appl. 443 385-408
[10]  
Cloez B(2004)Random dynamical systems with jumps J. Appl. Probab. 41 890-910