Isometric Embeddings of Families of Special Lagrangian Submanifolds

被引:0
作者
Diego Matessi
机构
[1] Università del Piemonte Orientale,Dipartimento di Scienze e Tecnologie Avanzate
来源
Annals of Global Analysis and Geometry | 2006年 / 29卷
关键词
Calabi–Yau manifolds; special Lagrangian submanifolds;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that certain Riemannian manifolds can be isometrically embedded inside Calabi–Yau manifolds. For example, we prove that given any real-analytic one parameter family of Riemannian metrics gt on a three-dimensional manifold Y with volume form independent of t and with a real-analytic family of nowhere vanishing harmonic one forms θt, then (Y,gt) can be realized as a family of special Lagrangian submanifolds of a Calabi–Yau manifold X. We also prove that certain principal torus bundles can be equivariantly and isometrically embedded inside Calabi-Yau manifolds with torus action. We use this to construct examples of n-parameter families of special Lagrangian tori inside n + k-dimensional Calabi–Yau manifolds with torus symmetry. We also compute McLean's metric of 3-dimensional special Lagrangian fibrations with T2-symmetry.
引用
收藏
页码:197 / 220
页数:23
相关论文
共 11 条
  • [1] Bryant R. L.(1999)Some examples of special lagrangian tori Adv. Theor. Math. Phys. 3 83-90
  • [2] Bryant R. L.(2000)Calibrated embeddings in the special Lagrangian and coassociative cases Ann. Global Anal. Geom. 18 405-435
  • [3] Goldstein E.(2001)Calibrated fibrations on noncompact manifolds via torus actions Duke Math. J. 110 309-343
  • [4] Hitchin N. J.(1999)The moduli space of complex Lagrangian submanifolds Asian J. Math. 3 77-91
  • [5] Matessi D.(2003)Some families of special Lagrangian tori Math. Annal. 325 211-228
  • [6] McLean R. C.(1998)Deformations of calibrated submanifolds Comm. Anal. Geom. 6 705-747
  • [7] Pedersen H.(1991)Hamiltonian constructions of Kähler–Einstein metrics and constant scalar curvature Comm. Math. Phys. 136 309-326
  • [8] Sun Poon Y.(1996)Mirror symmetry is T-duality Nucl. Phys. B479 243-259
  • [9] Strominger A.(undefined)undefined undefined undefined undefined-undefined
  • [10] Yau S. T.(undefined)undefined undefined undefined undefined-undefined