The Lower/Upper Bound Property of the Crouzeix–Raviart Element Eigenvalues on Adaptive Meshes

被引:0
作者
Yidu Yang
Jiayu Han
Hai Bi
Yuanyuan Yu
机构
[1] Guizhou Normal University,School of Mathematics and Computer Science
来源
Journal of Scientific Computing | 2015年 / 62卷
关键词
Crouzeix–Raviart element; Adaptive mesh; Eigenvalue; Lower/upper bound;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we first discover and prove that on adaptive meshes the eigenvalues by the Crouzeix–Raviart element approximate the exact ones from below when the corresponding eigenfunctions are singular. In addition, we use conforming finite elements to do the interpolation postprocessing to get the upper bound of the eigenvalues. Using the upper and lower bounds of eigenvalues we design the control condition of adaptive algorithm, and some numerical experiments are carried out under the package of Chen to validate our theoretical results.
引用
收藏
页码:284 / 299
页数:15
相关论文
共 81 条
[1]  
Agouzal A.(2005)A posteriori error estimator for finite element discretizations of Quasi–Newtonian flows Int. J. Numer. Anal. Model. 2 221-239
[2]  
Ainsworth M(1997)A posteriori error estimators for the Stokes and Oseen equations SIAM J. Numer. Anal. 34 228-245
[3]  
Oden JT(2004)Asymptotic lower bounds for eigenvalues by nonconforming finit element methods Electron. Trans. Numer. Anal. 17 92-101
[4]  
Armentano MG(2008)A posteriori error estimates for the Steklov eigenvalue problem Appl. Numer. Math. 58 593-601
[5]  
Duran RG(1978)A posteriori error estimates for the finite element method Int J. Numer. Methods Eng. 12 1597-1615
[6]  
Armentano M.G.(1979)Direct and inverse error estimates for finite elements with mesh refinement Numer. Math. 33 447-471
[7]  
Padra C.(2010)A Convergent nonconforming adaptive finite element method with quasi-optimal complexity SIAM J. Numer. Anal. 47 4639-4659
[8]  
Babuska I(1992)Linear finite element methods for planar linear elasticity Math. Comp. 59 321-338
[9]  
Rheinboldt WC(2007)Framework for the a posteriori error analysis of nonconforming finite elements SIAM J. Numer. Anal. 45 68-82
[10]  
Babuska I(2000)Residual type a posteriori error estimates for elliptic obstacle problems Numer. Math. 84 527-548