Bayesian sequential inference for nonlinear multivariate diffusions

被引:0
作者
Andrew Golightly
Darren J. Wilkinson
机构
[1] University of Newcastle upon Tyne,
来源
Statistics and Computing | 2006年 / 16卷
关键词
Bayesian inference; Particle filter; MCMC; Nonlinear stochastic differential equation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we adapt recently developed simulation-based sequential algorithms to the problem concerning the Bayesian analysis of discretely observed diffusion processes. The estimation framework involves the introduction of m−1 latent data points between every pair of observations. Sequential MCMC methods are then used to sample the posterior distribution of the latent data and the model parameters on-line. The method is applied to the estimation of parameters in a simple stochastic volatility model (SV) of the U.S. short-term interest rate. We also provide a simulation study to validate our method, using synthetic data generated by the SV model with parameters calibrated to match weekly observations of the U.S. short-term interest rate.
引用
收藏
页码:323 / 338
页数:15
相关论文
共 50 条
  • [1] Bayesian sequential inference for nonlinear multivariate diffusions
    Golightly, Andrew
    Wilkinson, Darren J.
    STATISTICS AND COMPUTING, 2006, 16 (04) : 323 - 338
  • [2] Bayesian inference for nonlinear multivariate diffusion models observed with error
    Golightly, A.
    Wilkinson, D. J.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1674 - 1693
  • [3] Sequential Bayesian Phylogenetic Inference
    Hoehna, Sebastian
    Hsiang, Allison Y.
    SYSTEMATIC BIOLOGY, 2024, 73 (04) : 704 - 721
  • [4] Bayesian inference for multivariate gamma distributions
    Tsionas, EG
    STATISTICS AND COMPUTING, 2004, 14 (03) : 223 - 233
  • [5] Bayesian inference for multivariate gamma distributions
    Efthymios G. Tsionas
    Statistics and Computing, 2004, 14 : 223 - 233
  • [6] BAYESIAN INFERENCE METHODS FOR UNIVARIATE AND MULTIVARIATE GARCH MODELS: A SURVEY
    Virbickaite, Audrone
    Concepcion Ausin, M.
    Galeano, Pedro
    JOURNAL OF ECONOMIC SURVEYS, 2015, 29 (01) : 76 - 96
  • [7] A new variational radial basis function approximation for inference in multivariate diffusions
    Vrettas, Michail D.
    Cornford, Dan
    Opper, Manfred
    Shen, Yuan
    NEUROCOMPUTING, 2010, 73 (7-9) : 1186 - 1198
  • [8] Bayesian sequential inference for stochastic kinetic biochemical network models
    Golightly, Andrew
    Wilkinson, Darren J.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2006, 13 (03) : 838 - 851
  • [9] Stochastic zeroth-order discretizations of Langevin diffusions for Bayesian inference
    Roy, Abhishek
    Shen, Lingqing
    Balasubramanian, Krishnakumar
    Ghadimi, Saeed
    BERNOULLI, 2022, 28 (03) : 1810 - 1834
  • [10] NONLINEAR LEAST SQUARES AND BAYESIAN INFERENCE
    Forbes, Alistair B.
    ADVANCED MATHEMATICAL AND COMPUTATIONAL TOOLS IN METROLOGY AND TESTING VIII, 2009, 78 : 104 - 112