An inverse problem of identifying the coefficient in a nonlinear time-fractional diffusion equation

被引:0
作者
A. Oulmelk
L. Afraites
A. Hadri
机构
[1] Université Sultan Moulay Slimane,EMI FST Béni
[2] Université Ibn Zohr,Mellal
来源
Computational and Applied Mathematics | 2023年 / 42卷
关键词
Inverse problem; parameter identification; optimal control; stability result; time-fractional diffusion.; 35E10; 35E15; 65K10; 65M06; 65M30; 65M32;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with an inverse problem of identifying parameters in a nonlinear subdiffusion model from a final observation. The nonlinear subdiffusion model involves a Caputo fractional derivative of order α∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1)$$\end{document} in time. Such problem has important application in a large field of applied science. To treat our model, we first study the regularity of the solution for the direct problem by means of Mittag–Leffler functions. Second, to study our inverse parameter problem, we reformulate it into an optimal control one with a Least Squares cost function and we establish the existence of the optimal solution. Third, we show the uniqueness and stability with respect to the data of our inverse problem based on the optimality conditions of the considered functional and the regularity of the solution for the direct problem. Finally, we present some numerical experiments using descent gradient algorithm.
引用
收藏
相关论文
共 93 条
[1]  
Afraites L(2015)Parameters identification in the mathematical model of immune competition cells J Inverse Ill-posed Probl 23 323-337
[2]  
Atlas A(2021)A high order pde-constrained optimization for the image denoising problem Inverse Probl Sci Eng 29 1821-1863
[3]  
Afraites L(2022)A weighted parameter identification pde-constrained optimization for inverse image denoising problem Vis Comput 38 2883-2898
[4]  
Hadri A(2021)A novel image denoising approach based on a non-convex constrained PDE: application to ultrasound images SIViP 15 1057-1064
[5]  
Laghrib A(2015)Maximum principle for the multi-term time-fractional diffusion equations with the Riemann–Liouville fractional derivatives Appl Math Comput 257 40-51
[6]  
Nachaoui M(2019)A new fast algorithm to achieve the dose uniformity around high dose rate brachytherapy stepping source using tikhonov regularization Austr Phys Eng Sci Med 42 757-769
[7]  
Afraites L(2014)Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking Phys Chem Chem Phys 16 24128-24164
[8]  
Hadri A(1998)Dispersive transport of ions in column experiments: an explanation of long-tailed profiles Water Resour Res 34 1027-1033
[9]  
Laghrib A(2011)High-order finite element methods for time-fractional partial differential equations J Comput Appl Math 235 3285-3290
[10]  
Nachaoui M(2012)An inverse problem for a one-dimensional time-fractional diffusion problem Inverse Prob 28 1466-1496, 03