Appearance of New Parametric Resonances in Time-Dependent Harmonic Oscillator

被引:0
作者
Pavel Nesterov
机构
[1] Yaroslavl State University,Department of Mathematics
来源
Results in Mathematics | 2013年 / 64卷
关键词
34E10; 34C29; Parametric resonance; harmonic oscillator; adiabatic oscillator; oscillatory decreasing perturbation; method of averaging; asymptotic integration;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish that in time-dependent harmonic oscillator under an oscillatory decreasing perturbation the parametric resonances, which do not exist in an ordinary harmonic oscillator under the same perturbation, may occur.
引用
收藏
页码:229 / 251
页数:22
相关论文
共 27 条
  • [1] Broer H.W.(2012)Resonance and fractal geometry Acta Appl. Math. 120 61-86
  • [2] Burd V.Sh.(1998)On the asymptotic integration of systems of linear differential equations with oscillatory decreasing coefficients Math. Notes 64 571-578
  • [3] Karakulin V.A.(2010)Parametric resonance in adiabatic oscillators Results Math. 58 1-15
  • [4] Burd V.(1974)On the asymptotic integration of linear differential systems J. Math. Anal. Appl. 48 1-16
  • [5] Nesterov P.(1977)A unified theory of asymptotic integration J. Math. Anal. Appl. 57 571-586
  • [6] Harris W.A.(1948)The asymptotic nature of the solutions of linear systems of differential equations Duke Math. J. 15 111-126
  • [7] Lutz D.A.(2013)Schrödinger operators with slowly decaying Wigner-von Neumann type potentials J. Spectr. Theory 3 147-169
  • [8] Harris W.A.(2012)Zeroes of the spectral density of the periodic Schrödinger operator with Wigner–von Neumann potential Math. Proc. Cambridge Philos. Soc. 153 33-58
  • [9] Lutz D.A.(2006)Construction of the asymptotics of the solutions of the one-dimensional Schrödinger equation with rapidly oscillating potential Math. Notes 80 233-243
  • [10] Levinson N.(2007)Averaging method in the asymptotic integration problem for systems with oscillatory-decreasing coefficients Differ. Equ. 43 745-756