Optimization of regenerative cycle with open feed water heater using genetic algorithms and neural networks

被引:0
|
作者
A. R. Moghadassi
F. Parvizian
B. Abareshi
F. Azari
I. Alhajri
机构
[1] Arak University,Department of Chemical Engineering, Faculty of Engineering
[2] College of Technological Studies,Chemical Engineering Department
来源
Journal of Thermal Analysis and Calorimetry | 2010年 / 100卷
关键词
Genetic algorithm; Artificial neural network; Rankin cycle; Maximum work;
D O I
暂无
中图分类号
学科分类号
摘要
This article determines the operating conditions leading to maximum work in a regenerative cycle with an open feed water heater through a procedure that combines the use of artificial neural networks (ANNs) and genetic algorithms (GAs). Water is an active fluid in the thermodynamical cycle; an objective function is obtained by using vapor enthalpy (a nonlinear function of operating conditions). Utilizing classical methods for maximizing the objective function usually leads to suboptimal solutions. Therefore, this article uses ANNs to estimate the steam properties as a function of operating conditions and GAs to optimize the thermodynamical cycle. The operating conditions are chosen with the aim of gaining maximum work in a boiler for a specific heat. To estimate the thermodynamic properties, an ANN was used to provide the necessary data required in the GA calculation.
引用
收藏
页码:757 / 761
页数:4
相关论文
共 50 条
  • [1] Optimization of regenerative cycle with open feed water heater using genetic algorithms and neural networks
    Moghadassi, A. R.
    Parvizian, F.
    Abareshi, B.
    Azari, F.
    Alhajri, I.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2010, 100 (03) : 757 - 761
  • [2] Analysis and optimization of a transcritical power cycle with regenerator using artificial neural networks and genetic algorithms
    Rashidi, M. M.
    Beg, O. Anwar
    Parsa, A. Basiri
    Nazari, F.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2011, 225 (A6) : 701 - 717
  • [3] Optimization of a fermentation medium using neural networks and genetic algorithms
    Nagata, Y
    Chu, KH
    BIOTECHNOLOGY LETTERS, 2003, 25 (21) : 1837 - 1842
  • [4] Optimization of a fermentation medium using neural networks and genetic algorithms
    Yuko Nagata
    Khim Hoong Chu
    Biotechnology Letters, 2003, 25 : 1837 - 1842
  • [5] Modeling and optimization of a pharmaceutical crystallization process by using neural networks and genetic algorithms
    Velasco-Mejia, A.
    Vallejo-Becerra, V.
    Chavez-Ramirez, A. U.
    Torres-Gonzalez, J.
    Reyes-Vidal, Y.
    Castaneda-Zaldivar, F.
    POWDER TECHNOLOGY, 2016, 292 : 122 - 128
  • [6] OPTIMIZATION OF THE PARAMETERS OF BIOCATALYTIC HYDROLYSIS OF VEGETABLE OIL USING THE METHODS OF NEURAL NETWORKS AND GENETIC ALGORITHMS
    Nekrasov, Pavlo O.
    Berezka, Tetiana O.
    Nekrasov, Oleksandr P.
    Gudz, Olga M.
    Molchenko, Svitlana M.
    Rudneva, Svitlana I.
    JOURNAL OF CHEMISTRY AND TECHNOLOGIES, 2023, 31 (01): : 140 - 146
  • [7] Optimization of Solar Cell Production Lines Using Neural Networks and Genetic Algorithms
    Buratti, Yoann
    Eijkens, Casper
    Hameiri, Ziv
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (11) : 10317 - 10322
  • [8] Parameter optimization in melt spinning by neural networks and genetic algorithms
    Chang-Chiun Huang
    Tsann-Tay Tang
    The International Journal of Advanced Manufacturing Technology, 2006, 27 : 1113 - 1118
  • [9] Parameter optimization in melt spinning by neural networks and genetic algorithms
    Huang, CC
    Tang, TT
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2006, 27 (11-12) : 1113 - 1118
  • [10] Coevolution in recurrent neural networks using genetic algorithms
    Sato, Y
    Furuya, T
    SYSTEMS AND COMPUTERS IN JAPAN, 1996, 27 (05) : 64 - 73