Maximum Intersection of Linear Codes and Codes Equivalent to Linear

被引:0
作者
Avgustinovich S.V. [1 ,2 ]
Gorkunov E.V. [1 ,2 ]
机构
[1] Sobolev Institute of Mathematics, pr. Akad. Koptyuga 4, Novosibirsk
[2] Novosibirsk State University, ul. Pirogova 1, Novosibirsk
基金
俄罗斯基础研究基金会;
关键词
code intersection; equivalent code; finite field; isometry; isotopy; linear code; MDS-code; pseudolinear code;
D O I
10.1134/S1990478919040021
中图分类号
学科分类号
摘要
We consider linear codes in a space over a finite field with the Hamming metric. A code is called pseudolinear if it is the image of a linear code under an isometric transformation of the space. We derive an upper bound (q - 2)M/q attainable for q ⩾ 3 for the size of the intersection of two different pseudolinear codes of the same size M. © 2019, Pleiades Publishing, Ltd.
引用
收藏
页码:600 / 605
页数:5
相关论文
共 10 条
[1]  
Markov A.A., On Transformations Without Error Propagation, Selected Works, Vol. II: Theory of Algorithms and Constructive Mathematics. Mathematical Logic. Information Science and Related Topics, pp. 70-93, (2003)
[2]  
Bar-Yahalom E., Etzion T., Intersection of Isomorphic Linear Codes, J. Combin. Theory Ser. A, 80, 1, pp. 247-256, (1997)
[3]  
Etzion T., Vardy A., Perfect Binary Codes and Tilings: Problems and Solutions, SIAM J. Discrete Math., 11, 2, pp. 205-223, (1998)
[4]  
Potapov V.N., Cardinality Spectra of Components of Correlation-Immune Functions, Bent Functions, Perfect Colorings, and Codes, Problemy Peredachi Informatsii, 48, 1, pp. 54-63, (2012)
[5]  
Avgustinovich S.V., Solov'eva F.I., Heden O., Partitions of an n-Cube into Nonequivalent Perfect Codes, Problemy Peredachi Informatsii, 43, 4, pp. 45-50, (2007)
[6]  
Los' A.V., Solov'eva F.I., On Partitions of the Space F <sup>N</sup> <sub>q</sub> into Affine Nonequivalent Perfect q-Ary Codes, Sibir. Elektron. Mat. Izv., 7, pp. 425-434, (2010)
[7]  
MacWilliams F.J., Sloane N.J.A., The Theory of Error-Correcting Codes, (1977)
[8]  
Frisch S., On the Minimal Distance Between Group Tables, Acta Sci. Math., 63, pp. 341-351, (1997)
[9]  
Krotov D.S., Potapov V.N., Sokolova P.V., On Reconstructing Reducible n-Ary Quasigroups and Switching Subquasigroups, Quasigr. Relat. Syst., 16, pp. 55-67, (2008)
[10]  
Potapov V.N., Krotov D.S., Asymptotics for the Number of n-Quasigroups of Order 4, Sibir. Mat. Zh., 47, 4, pp. 873-887, (2006)