Szász-Durrmeyer Operators Based on Dunkl Analogue

被引:0
作者
Abdul Wafi
Nadeem Rao
机构
[1] Jamia Millia Islamia,Department of Mathematics
来源
Complex Analysis and Operator Theory | 2018年 / 12卷
关键词
Sz; sz operators; Linear positive operators; Modulus of continuity; Rate of convergence; Dunkl analogue; 41A10; 41A25; 41A28; 41A35; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
In this article, we construct Sza´\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\acute{a}$$\end{document}sz-Durrmeyer type operators based on Dunkl analogue. We investigate several approximation results by these positive linear sequences, e.g. rate of convergence by means of classical modulus of continuity, uniform approximation using Korovkin type theorem on compact interval. Further, we discuss local approximations in terms of second order modulus of continuity, Peetre’s K-functional, Lipschitz type class and rth order Lipschitz-type maximal function. Weighted approximation and statistical approximation results are discussed in the last of this article.
引用
收藏
页码:1519 / 1536
页数:17
相关论文
共 29 条
  • [1] Weierstrass KG(1885)Über die analyishe Darstellbar keit sogenonnter willkürlincher Funtionen einer reelen Veründerlichen Sitz. Akad. Berl. 2 633-693
  • [2] Berntein SN(1912)Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités Commun. Soc. Math. Kharkow. 13 1-2
  • [3] Szász O(1950)Generalization of S. Bernstein’s polynomials to the infinite interval J. Res. Nat. Bur. Stand. 45 239-245
  • [4] Wafi A(2016)Approximation Properties by Generalized-BaskakovKantorovich-Stancu Type Operators Appl. Math. Inf. Sci. Lett. 4 111-118
  • [5] Rao N(2014)Approximation by Jakimovski–Leviatan type operators on a complex domain Complex Anal. Oper. Theory 8 177-188
  • [6] Rai D(2015)Khursheed J. Ansari, On Chlodowsky variant of Szász operators by Brenke type polynomials Appl. Math. Comput. 271 991-1003
  • [7] Sucu S(2015)Szász-Durrmeyer type operators based on Charlier polynomials Appl. Math. Comput. 268 1001-1014
  • [8] İbikli E(2013)Rate of convergence for Szász type operators including Sheffer polynomials Stud. Univ. Babeş-Bolyai Math. 58 55-63
  • [9] Mursaleen M(2012)Szász type operators involving Charlier polynomials Math. Comput. Modelling. 56 118-122
  • [10] Kajla A(2014)Dunkl analogue of Szász operators Appl. Math. Comput. 244 42-48