A computational framework for boosting confidence in high-throughput protein-protein interaction datasets

被引:0
|
作者
Raghavendra Hosur
Jian Peng
Arunachalam Vinayagam
Ulrich Stelzl
Jinbo Xu
Norbert Perrimon
Jadwiga Bienkowska
Bonnie Berger
机构
[1] Computer Science and Artificial Intelligence Laboratory,Department of Genetics
[2] Toyota Technological Institute,Department of Mathematics
[3] Harvard Medical School,undefined
[4] Otto-Warburg Laboratory,undefined
[5] Ihnestraβe 63-73,undefined
[6] Max Planck Institute for Molecular Genetics,undefined
[7] Howard Hughes Medical Institute,undefined
[8] Computational Biology group,undefined
[9] Biogen Idec,undefined
[10] 14 Cambridge Center,undefined
[11] MIT,undefined
来源
关键词
Markov Chain Monte Carlo; Protein Data Bank; Confidence Score; Interface Residue; Probabilistic Graphical Model;
D O I
暂无
中图分类号
学科分类号
摘要
Improving the quality and coverage of the protein interactome is of tantamount importance for biomedical research, particularly given the various sources of uncertainty in high-throughput techniques. We introduce a structure-based framework, Coev2Net, for computing a single confidence score that addresses both false-positive and false-negative rates. Coev2Net is easily applied to thousands of binary protein interactions and has superior predictive performance over existing methods. We experimentally validate selected high-confidence predictions in the human MAPK network and show that predicted interfaces are enriched for cancer -related or damaging SNPs. Coev2Net can be downloaded at http://struct2net.csail.mit.edu.
引用
收藏
相关论文
共 50 条
  • [11] Filtering high-throughput protein-protein interaction data using a combination of genomic features
    Ashwini Patil
    Haruki Nakamura
    BMC Bioinformatics, 6
  • [12] Arabidopsis Protein Microarrays for the High-Throughput Identification of Protein-Protein Interactions
    Popescu, Sorina C.
    Snyder, Michael
    Dinesh-Kumar, S. P.
    PLANT SIGNALING & BEHAVIOR, 2007, 2 (05) : 416 - 420
  • [13] DockNet: high-throughput protein-protein interface contact prediction
    Williams, Nathan P.
    Rodrigues, Carlos H. M.
    Truong, Jia
    Ascher, David B.
    Holien, Jessica K.
    BIOINFORMATICS, 2023, 39 (01)
  • [14] High-throughput identification of interacting protein-protein binding sites
    Jo-Lan Chung
    Wei Wang
    Philip E Bourne
    BMC Bioinformatics, 8
  • [15] High-throughput identification of interacting protein-protein binding sites
    Chung, Jo-Lan
    Wang, Wei
    Bourne, Philip E.
    BMC BIOINFORMATICS, 2007, 8
  • [16] Yeast-BRET: a high-throughput screening platform for the characterization of protein-protein interaction inhibitors
    Sartini, Sara
    Corbel, Caroline
    Levati, Elisabetta
    Dieci, Giorgio
    Maillet, Laurent
    Colas, Pierre
    Couturier, Cyril
    Bach, Stephane
    Montanini, Barbara
    Ottonello, Simone
    YEAST, 2015, 32 : S187 - S187
  • [17] PPIMpred: a web server for high-throughput screening of small molecules targeting protein-protein interaction
    Jana, Tanmoy
    Ghosh, Abhirupa
    Das Mandal, Sukhen
    Banerjee, Raja
    Saha, Sudipto
    ROYAL SOCIETY OPEN SCIENCE, 2017, 4 (04):
  • [18] Uncovering domain motif interactions using high-throughput protein-protein interaction detection methods
    Idrees, Sobia
    Paudel, Keshav Raj
    Sadaf, Tayyaba
    Hansbro, Philip M.
    FEBS LETTERS, 2024, 598 (07) : 725 - 742
  • [19] Towards high-throughput flim for protein-protein interaction screening of live cells and tissue microarrays
    Barber, P. R.
    Pierce, G. P.
    Ameer-Beg, S. M.
    Matthews, D. R.
    Carlin, L. M.
    Keppler, M.
    Kelleher, M.
    Festy, F.
    Gillett, C.
    Springall, R.
    Ng, T. C.
    Vojnovic, B.
    2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, : 356 - +
  • [20] Inferring protein-protein interactions through high-throughput interaction data from diverse organisms
    Liu, Y
    Liu, NJ
    Zhao, HY
    BIOINFORMATICS, 2005, 21 (15) : 3279 - 3285