Automotive fault nowcasting with machine learning and natural language processing

被引:0
|
作者
John Pavlopoulos
Alv Romell
Jacob Curman
Olof Steinert
Tony Lindgren
Markus Borg
Korbinian Randl
机构
[1] Stockholm University,Department of Computer and Systems Sciences
[2] Scania CV,Strategic Product Planning and Advanced Analytics
[3] Lund University,Department of Computer Science
来源
Machine Learning | 2024年 / 113卷
关键词
Automotive fault nowcasting; Natural language processing; Multilingual text classification;
D O I
暂无
中图分类号
学科分类号
摘要
Automated fault diagnosis can facilitate diagnostics assistance, speedier troubleshooting, and better-organised logistics. Currently, most AI-based prognostics and health management in the automotive industry ignore textual descriptions of the experienced problems or symptoms. With this study, however, we propose an ML-assisted workflow for automotive fault nowcasting that improves on current industry standards. We show that a multilingual pre-trained Transformer model can effectively classify the textual symptom claims from a large company with vehicle fleets, despite the task’s challenging nature due to the 38 languages and 1357 classes involved. Overall, we report an accuracy of more than 80% for high-frequency classes and above 60% for classes with reasonable minimum support, bringing novel evidence that automotive troubleshooting management can benefit from multilingual symptom text classification.
引用
收藏
页码:843 / 861
页数:18
相关论文
共 50 条
  • [1] Automotive fault nowcasting with machine learning and natural language processing
    Pavlopoulos, John
    Romell, Alv
    Curman, Jacob
    Steinert, Olof
    Lindgren, Tony
    Borg, Markus
    Randl, Korbinian
    MACHINE LEARNING, 2024, 113 (02) : 843 - 861
  • [2] Artificial learning companionusing machine learning and natural language processing
    R. Pugalenthi
    A Prabhu Chakkaravarthy
    J Ramya
    Samyuktha Babu
    R. Rasika Krishnan
    International Journal of Speech Technology, 2021, 24 : 553 - 560
  • [3] Artificial learning companionusing machine learning and natural language processing
    Pugalenthi, R.
    Prabhu Chakkaravarthy, A.
    Ramya, J.
    Babu, Samyuktha
    Rasika Krishnan, R.
    INTERNATIONAL JOURNAL OF SPEECH TECHNOLOGY, 2021, 24 (03) : 553 - 560
  • [4] Quantum machine learning for natural language processing application
    Pandey, Shyambabu
    Basisth, Nihar Jyoti
    Sachan, Tushar
    Kumari, Neha
    Pakray, Partha
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 627
  • [5] Application of Natural Language Processing and Machine Learning to Radiology Reports
    Jeon, Seoungdeok
    Colburn, Zachary
    Sakai, Joshua
    Hung, Ling-Hong
    Yeung, Ka Yee
    12TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS (ACM-BCB 2021), 2021,
  • [6] Natural language processing and machine learning to assist radiation oncology incident learning
    Mathew, Felix
    Wang, Hui
    Montgomery, Logan
    Kildea, John
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2021, 22 (11): : 172 - 184
  • [7] SmishGuard: Leveraging Machine Learning and Natural Language Processing for Smishing Detection
    Samad, Saleem Raja Abdul
    Ganesan, Pradeepa
    Rajasekaran, Justin
    Radhakrishnan, Madhubala
    Ammaippan, Hariraman
    Ramamurthy, Vinodhini
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (11) : 586 - 593
  • [8] Subjective Answers Evaluation Using Machine Learning and Natural Language Processing
    Bashir, Muhammad Farrukh
    Arshad, Hamza
    Javed, Abdul Rehman
    Kryvinska, Natalia
    Band, Shahab S.
    IEEE ACCESS, 2021, 9 : 158972 - 158983
  • [9] SmartFund: Predicting Research Outcomes with Machine Learning and Natural Language Processing
    Alaphat, Alvin
    Jiang, Meng
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 2857 - 2865
  • [10] Detecting Phishing Attacks Using Natural Language Processing And Machine Learning
    Banu, Reshma
    Anand, M.
    Kamath, Akshatha C.
    Ashika, S.
    Ujwala, H. S.
    Harshitha, S. N.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICCS), 2019, : 1210 - 1214