Sparse Domination and Weighted Inequalities for the ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document}-Variation of Singular Integrals and Commutators

被引:0
作者
Yongming Wen
Huoxiong Wu
Qingying Xue
机构
[1] Minnan Normal University,School of Mathematics and Statistics
[2] Xiamen University,School of Mathematical Sciences
[3] Beijing Normal University,School of Mathematical Sciences
[4] Ministry of Education,Laboratory of Mathematics and Complex Systems
关键词
Variation operators; Singular integrals; Commutators; Sparse operators; Quantitative weighted bounds; Hörmander conditions; 42B20; 42B25;
D O I
10.1007/s12220-022-01059-y
中图分类号
学科分类号
摘要
This paper gives pointwise sparse domination results for variation operators of singular integrals and commutators with kernels satisfying Lr\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^r$$\end{document}-Hörmander conditions. As applications, we obtain strong-type quantitative weighted bounds for such variation operators, weak-type quantitative weighted bounds for the variation operators of singular integrals and quantitative weighted weak-type endpoint estimates for variation operators of commutators, which are completely new even in the un-weighted case. In addition, we also obtain local exponential decay estimates for such variation operators.
引用
收藏
相关论文
共 117 条
[1]  
Accomazzo N(2020)On Bloom type estimates for iterated commutators of fractional integrals Indiana Univ. Math. J. 69 1207-1230
[2]  
Martínez-perales JC(1998)Variation in probability, ergodic theory and analysis Ill. J. Math. 42 154-177
[3]  
Rivera-Ríos IP(2016)Sharp weighted norm estimates beyond Calderón–Zygmund theory Anal. PDE 9 1079-1113
[4]  
Akcoglu M(2013)-boundedness properties of variation operators in the Schrödinger setting Rev. Mat. Complut. 26 485-534
[5]  
Jones RL(1989)Pointwise ergodic theorems for arithmetric sets Publ. Math. Inst. Hautes Études Sci. 69 5-45
[6]  
Schwartz P(2018)On dimension-free variational inequalities for averaging operators in Geom. Funct. Anal. 28 58-99
[7]  
Bernicot F(1993)Estimates for operators norms on weighted spaces and reverse Jensen inequalities Trans. Am. Math. Soc. 340 253-272
[8]  
Frey D(2000)Oscillations and variation for the Hilbert transform Duke Math. J. 105 59-83
[9]  
Petermichl S(2003)Oscillations and variation for singular integrals in higher dimensions Trans. Am. Math. Soc. 355 2115-2137
[10]  
Betancor JJ(2021)Sharp reverse Hölder inequality for J. Geom. Anal. 31 4165-4190