Blocking sets in PG(2, qn) from cones of PG(2n, q)

被引:0
作者
Francesco Mazzocca
Olga Polverino
机构
[1] Seconda Università degli Studi di Napoli,Dipartimento di Matematica
来源
Journal of Algebraic Combinatorics | 2006年 / 24卷
关键词
Blocking set; André/Bruck-Bose representation; Ovoid;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar B}$$\end{document} be a subset of Σ = PG(2n−1,q) and a subset of PG(2n,q) respectively, with Σ ⊂ PG(2n,q) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar B}\not\subset \Sigma}$$\end{document}. Denote by K the cone of vertex Ω and base \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar B}$$\end{document} and consider the point set B defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B=\big(K{\setminus}\Sigma\big) \cup \{X\in \S\, : \, X\cap K\neq \emptyset\},$$\end{document} in the André, Bruck-Bose representation of PG(2,qn) in PG(2n,q) associated to a regular spread \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}$$\end{document} of PG(2n−1,q). We are interested in finding conditions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar B}$$\end{document} and Ω in order to force the set B to be a minimal blocking set in PG(2,qn) . Our interest is motivated by the following observation. Assume a Property α of the pair (Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar B}$$\end{document}) forces B to turn out a minimal blocking set. Then one can try to find new classes of minimal blocking sets working with the list of all known pairs (Ω, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar B}$$\end{document}) with Property α. With this in mind, we deal with the problem in the case Ω is a subspace of PG(2n−1,q) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar B}$$\end{document} a blocking set in a subspace of PG(2n,q); both in a mutually suitable position. We achieve, in this way, new classes and new sizes of minimal blocking sets in PG(2,qn), generalizing the main constructions of [14]. For example, for q = 3h, we get large blocking sets of size qn + 2 + 1 (n≥ 5) and of size greater than qn+2 + qn−6 (n≥ 6). As an application, a characterization of Buekenhout-Metz unitals in PG(2,q2k) is also given.
引用
收藏
页码:61 / 81
页数:20
相关论文
共 47 条
  • [11] Bose R. C.(1976)Hyperplane Coverings and Blocking Sets Geom. Dedicata 5 189-194
  • [12] Bruck R. H.(2005)Existence of unitals in finite translation planes of order q J. Combin. Des. 13 25-41
  • [13] Bose R. C.(1997) with a kernel of order q European J. Combin. 18 171-173
  • [14] Bruen A. A.(1997)On large minimal blocking sets in PG(2,q) Discrete Math. 174 167-176
  • [15] Bruen A. A.(1991)The non-existence of ovoids in O Mitt. Math. Sem. Giessen 201 97-107
  • [16] Thas J. A.(1991)Proper blocking sets in projective spaces Ratio Math. 208/209 151-155
  • [17] Buekenhout F.(1982)Blocking sets and maximal strong representative systems in finite projective planes Canad. J. Math. 34 1195-1207
  • [18] Cossidente A.(1999)On irreducible blocking sets in projective planes Geom. Dedicata 75 245-261
  • [19] Gács A.(2001)Ovoids and translation planes Combinatorica 21 571-581
  • [20] Mengyán C.(1964)Normal spreads Ann. Mat. Pura Appl. 64 1-76