Blocking sets in PG(2, qn) from cones of PG(2n, q)

被引:0
作者
Francesco Mazzocca
Olga Polverino
机构
[1] Seconda Università degli Studi di Napoli,Dipartimento di Matematica
来源
Journal of Algebraic Combinatorics | 2006年 / 24卷
关键词
Blocking set; André/Bruck-Bose representation; Ovoid;
D O I
暂无
中图分类号
学科分类号
摘要
Let Ω and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar B}$$\end{document} be a subset of Σ = PG(2n−1,q) and a subset of PG(2n,q) respectively, with Σ ⊂ PG(2n,q) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar B}\not\subset \Sigma}$$\end{document}. Denote by K the cone of vertex Ω and base \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar B}$$\end{document} and consider the point set B defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B=\big(K{\setminus}\Sigma\big) \cup \{X\in \S\, : \, X\cap K\neq \emptyset\},$$\end{document} in the André, Bruck-Bose representation of PG(2,qn) in PG(2n,q) associated to a regular spread \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal S}$$\end{document} of PG(2n−1,q). We are interested in finding conditions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar B}$$\end{document} and Ω in order to force the set B to be a minimal blocking set in PG(2,qn) . Our interest is motivated by the following observation. Assume a Property α of the pair (Ω,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar B}$$\end{document}) forces B to turn out a minimal blocking set. Then one can try to find new classes of minimal blocking sets working with the list of all known pairs (Ω, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar B}$$\end{document}) with Property α. With this in mind, we deal with the problem in the case Ω is a subspace of PG(2n−1,q) and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar B}$$\end{document} a blocking set in a subspace of PG(2n,q); both in a mutually suitable position. We achieve, in this way, new classes and new sizes of minimal blocking sets in PG(2,qn), generalizing the main constructions of [14]. For example, for q = 3h, we get large blocking sets of size qn + 2 + 1 (n≥ 5) and of size greater than qn+2 + qn−6 (n≥ 6). As an application, a characterization of Buekenhout-Metz unitals in PG(2,q2k) is also given.
引用
收藏
页码:61 / 81
页数:20
相关论文
共 47 条
  • [1] André J.(1954)Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe Math. Z. 60 156-186
  • [2] Ball S.(2004)On ovoids of Adv. Geom. 4 1-7
  • [3] Barwick S. G.(2000)The André/Bruck and Bose representation in Bull. Belg. Math. Soc. Simon Stevin 7 173-197
  • [4] Casse L. R. A.(1988) unitals and Baer subplanes Atti Sem. Mat. Fis. Univ. Modena 34 165-196
  • [5] Quinn C. T.(1980)Blocking sets e teoria dei giochi: origini e problematiche Geom. Dedicata 9 425-449
  • [6] Berardi L.(1994)Blocking sets and partial spreads in finite projective spaces Combinatorica 14 273-276
  • [7] Eugeni F.(1964)On the size of a blocking set in J. Algebra 1 85-102
  • [8] Beutelspacher A.(1966)The construction of translation planes from projective spaces J. Algebra 4 117-172
  • [9] Blokhuis A.(1970)Linear representations of projective planes in projective spaces Bull. Amer. Math. Soc. 76 342-344
  • [10] Bruck R. H.(1982)Baer subplanes and blocking sets Math. Z. 181 407-409