Global existence and asymptotic behavior of solutions to a semilinear parabolic equation on Carnot groups

被引:0
作者
Zixia Yuan
机构
[1] University of Electronic Science and Technology of China,School of Mathematical Sciences
来源
Boundary Value Problems | / 2015卷
关键词
Carnot group; existence; asymptotic behavior; 35K65; 35J70; 35B40;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we consider the semilinear parabolic equation ∑i,j=1maijXiXju−∂tu+Vup=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum_{i,j = 1}^{m} {a_{ij} X_{i} X_{j} u} - \partial_{t} u + Vu^{p} = 0$\end{document} with a general class of potentials V=V(ξ,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$V=V(\xi,t)$\end{document}, where A={aij}i,j\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A = \{a_{ij} \}_{i,j} $\end{document} is a positive definite symmetric matrix and the Xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$X_{i}$\end{document}’s denotes a system of left-invariant vector fields on a Carnot group G. Based on a fixed point argument and by establishing some new estimates involving the heat kernel, we study the existence and large-time behavior of global positive solutions to the preceding equation.
引用
收藏
相关论文
共 31 条
[1]  
Fujita H(1966)On the blowing up of solutions of the Cauchy problem for J. Fac. Sci., Univ. Tokyo, Sect. I 13 109-124
[2]  
Levine H(1990)The value of the critical exponent for reaction-diffusion equations in cones Arch. Ration. Mech. Anal. 109 73-80
[3]  
Meier P(2007)Semilinear degenerate evolution inequalities with singular potential constructed from the generalized Greiner vector fields J. Geom. Phys. 57 1293-1302
[4]  
Yuan ZX(1997)Global existence and local continuity of solutions for semilinear parabolic equations Commun. Partial Differ. Equ. 22 1529-1557
[5]  
Niu PC(1998)Global asymptotic behavior of solutions of a semilinear parabolic equation Proc. Am. Math. Soc. 126 1491-1500
[6]  
Zhang Q(2007)On a semilinear parabolic equation Proc. Am. Math. Soc. 135 59-68
[7]  
Zhang Q(1998)The critical exponent of a reaction diffusion equation on some Lie groups Math. Z. 228 51-72
[8]  
Zhao Z(2006)On Am. J. Math. 128 453-480
[9]  
Riahi L(2004) and J. Differ. Equ. 202 306-331
[10]  
Zhang Q(2006) estimates for a parabolic Monge-Ampère equation in the Gauss curvature flows J. Math. Imaging Vis. 24 307-326