Tearing a neo-Hookean sheet. Part II: asymptotic analysis for crack tip fields

被引:0
作者
Yin Liu
Brian Moran
机构
[1] King Abdullah University of Science and Technology,Division of Physical Sciences and Engineering
[2] KAUST,undefined
[3] Institute of High Performance Computing,undefined
[4] A*STAR,undefined
来源
International Journal of Fracture | 2023年 / 240卷
关键词
Crack tip fields; Asymptotic analysis; Neo-Hookean materials; Damage; Phase field model;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we derive asymptotic crack tip fields during damage and tearing of a neo-Hookean sheet. The material damage near the crack tip is characterized by an exponential damage mode inspired by the damage distribution observed in a phase field model in Part I. The asymptotic governing equations consist of a quasi-linear eigenproblem for the deformed coordinates which reduce to the eigenproblem for a Laplace equation in the case of a purely elastic neo-Hookean sheet. The asymptotic fields are complemented by finite element results for a long-notched strip under uniaxial stretch. The asymptotic analysis indicates some interesting scaling relations and distribution features of the crack tip fields that are consistent with those observed in the phase field modelling. In particular, the stress component perpendicular to crack faces, σ22\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{22}$$\end{document}, vanishes at the crack tip instead of approaching infinity as observed in a purely elastic neo-Hookean sheet. Its magnitude is proportional to the critical energy release rate Gf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${G}_{\mathrm{f}}$$\end{document} and inversely proportional to the internal length scale in a scaled coordinate (scaled by the internal length scale ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell$$\end{document}), i.e., σ22∼Gfℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\sigma }_{22}\sim \frac{{G}_{\mathrm{f}}}\ell$$\end{document}. The near-tip crack faces become more blunted in comparison to a purely elastic neo-Hookean sheet.
引用
收藏
页码:93 / 117
页数:24
相关论文
共 78 条
[1]  
Ambrosio L(1990)Approximation of functional depending on jumps by elliptic functional via t-convergence Commun Pure Appl Math 43 999-1036
[2]  
Tortorelli VM(2018)Three-dimensional singular elastostatic fields in a cracked Neo-Hookean hyperelastic solid Int J Eng Sci 128 1-11
[3]  
Arfaoui M(1997)Scaling of quasibrittle fracture: asymptotic analysis Int J Fract 83 19-40
[4]  
Trifa M(2008)The variational approach to fracture J Elast 91 5-148
[5]  
Mansouri K(2021)Phase-field modelling of cohesive fracture Eur J Mech - ASolids 90 104343-98
[6]  
Karoui A(1994)Finite strains at the tip of a crack in a sheet of hyperelastic material: I Homogeneous Case J Elast 35 61-639
[7]  
Renard Y(2022)Phase-field implicit material point method with the convected particle domain interpolation for brittle–ductile failure transition in geomaterials involving finite deformation Comput Methods Appl Mech Eng 390 114420-293
[8]  
Bažant ZP(1977)The finite anti-plane shear field near the tip of a crack for a class of incompressible elastic solids Int J Fract 13 611-233
[9]  
Bourdin B(1983)Large deformations near a tip of an interface-crack between two Neo-Hookean sheets J Elast 13 257-107
[10]  
Francfort GA(1974)Finite-deformation analysis of the elastostatic field near the tip of a crack: Reconsideration and higher-order results J Elast 4 201-14253