Adaptively local consistent concept factorization for multi-view clustering

被引:0
作者
Mei Lu
Li Zhang
Fanzhang Li
机构
[1] Jinling Institute of Technology,School of Software Engineering
[2] Soochow University,School of Computer Science and Technology and Joint International Research Laboratory of Machine Learning and Neuromorphic Computing
来源
Soft Computing | 2022年 / 26卷
关键词
Concept factorization; Multi-view clustering; Local consistent;
D O I
暂无
中图分类号
学科分类号
摘要
Many real-world datasets consist of multiple views of data items. The rough method of combining multiple views directly through feature concatenation cannot uncover the optimal latent structure shared by multiple views, which would benefit many data analysis applications. Recently, multi-view clustering methods have emerged and been applied to solving many machine learning problems. However, most multi-view clustering methods ignore the joint information of multi-view data or neglect the quality difference between different views of data, resulting in decreased learning performance. In this paper, we discuss a multi-view clustering algorithm based on concept factorization that effectively fuses useful information to derive a better representation for more effective clustering. We incorporate two regularizers into the concept factorization framework. Specifically, one regularizer is adopted to force the coefficient matrix to move smoothly on the underlying manifold. The other regularizer is used to learn the latent clustering structure from different views. Both of these regularizers are incorporated into the concept factorization framework to learn the latent representation matrix. Optimization problems are solved efficiently via an iterative algorithm. The experimental results on seven real-world datasets demonstrate that our approach outperforms the state-of-the-art multi-view clustering algorithms.
引用
收藏
页码:1043 / 1055
页数:12
相关论文
共 50 条
  • [31] Scalable sparse bipartite graph factorization for multi-view clustering
    Wu, Jinghan
    Yang, Ben
    Yang, Shangzong
    Zhang, Xuetao
    Chen, Badong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 267
  • [32] Robust and Consistent Anchor Graph Learning for Multi-View Clustering
    Liu, Suyuan
    Liao, Qing
    Wang, Siwei
    Liu, Xinwang
    Zhu, En
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) : 4207 - 4219
  • [33] Multi-view clustering via robust consistent graph learning
    Wang, Changpeng
    Geng, Li
    Zhang, Jiangshe
    Wu, Tianjun
    DIGITAL SIGNAL PROCESSING, 2022, 128
  • [34] Consistent and diverse multi-View subspace clustering with structure constraint
    Si, Xiaomeng
    Yin, Qiyue
    Zhao, Xiaojie
    Yao, Li
    PATTERN RECOGNITION, 2022, 121
  • [35] Multi-Graph Constraint Matrix Factorization for Multi-view Image Clustering
    Li, Guopeng
    Geng, Junfeng
    Liu, Jing
    Han, Kun
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 415 - 418
  • [36] Incomplete Multi-view Clustering via Graph Regularized Matrix Factorization
    Wen, Jie
    Zhang, Zheng
    Xu, Yong
    Zhong, Zuofeng
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT IV, 2019, 11132 : 593 - 608
  • [37] Multi-view Clustering via Deep Matrix Factorization and Partition Alignment
    Zhang, Chen
    Wang, Siwei
    Liu, Jiyuan
    Zhou, Sihang
    Zhang, Pei
    Liu, Xinwang
    Zhu, En
    Zhang, Changwang
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 4156 - 4164
  • [38] MULTI-VIEW SUBSPACE CLUSTERING WITH LOCAL AND GLOBAL INFORMATION
    Duan, Yi-Qiang
    Yuan, Hao-Liang
    Lai, Loi Lei
    He, Ben
    PROCEEDINGS OF 2021 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2021, : 11 - 16
  • [39] Scalable tri-factorization guided multi-view subspace clustering
    Zhang, Guang-Yu
    Guan, Chang-Bin
    Huang, Dong
    Wen, Zihao
    Wang, Chang-Dong
    Xiao, Lei
    KNOWLEDGE-BASED SYSTEMS, 2025, 312
  • [40] Multi-view Spectral Clustering With Adaptive Local Neighbors
    Wang, Lijuan
    Xing, Jinping
    Yin, Ming
    Huang, Xinxuan
    PAAP 2021: 2021 12TH INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS AND PROGRAMMING, 2021, : 157 - 161