Tensor product weight modules of Schrödinger-Virasoro algebras

被引:0
作者
Dong Liu
Xiufu Zhang
机构
[1] Huzhou University,Department of Mathematics
[2] Jiangsu Normal University,School of Mathematics and Statistics
来源
Frontiers of Mathematics in China | 2019年 / 14卷
关键词
Harish-Chandra module; tensor product; highest weight module; intermediate series module; Schrödinger-Virasoro algebra; 17B10; 17B65; 17B68;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that the Schrödinger-Virasoro algebras, including the original Schrödinger-Virasoro algebra and the twisted Schrödinger-Virasoro algebra, are playing important roles in mathematics and statistical physics. In this paper, we study the tensor products of weight modules over the Schrödinger-Virasoro algebras. The irreducibility criterion for the tensor products of highest weight modules with intermediate series modules over the Schrödinger-Virasoro algebra is obtained.
引用
收藏
页码:381 / 393
页数:12
相关论文
共 48 条
[1]  
Alday L F(2010)Liouville Correlation Functions from Fourdimensional Gauge Theories Lett Math Phys 91 167-197
[2]  
Gaiotto D(1988)Moduli spaces of curves and representation theory Comm Math Phys 117 1-36
[3]  
Tachikawa Y(1974)On algebraically irreducible representations of the Lie algebra sl J Math Phys 15 350-359
[4]  
Arbarello E(1997)On the structure of Verma modules over Virasoro and Neveu-Schwarz algebras Comm Math Phys 186 531-562
[5]  
De Concini C(2003)Representations of the twisted Heisenberg-Virasoro algebra at level zero Canad Math Bull 46 529-537
[6]  
Kac V G(2013)Tensor product weight modules over the Virasoro algebra J Lond Math Soc 88 829-834
[7]  
Procesi C(2018)A family of new simple modules over the Schrödinger-Virasoro algebra J Pure Appl Algebra 222 900-913
[8]  
Arnal D(1990)Representations of the Virasoro algebra. In: Representation of Lie Groups and Related Topics Adv Stud Contemp Math 7 465-554
[9]  
Pinczon G(2011)Low dimensional cohomology groups of the Lie algebras Comm Algebra 39 397-423
[10]  
Astashkevich A(2011)( Doc Math 16 709-721