The generalized Bouleau-Yor identity for a sub-fractional Brownian motion

被引:0
作者
LiTan Yan
Kun He
Chao Chen
机构
[1] Donghua University,Department of Mathematics, College of Science
[2] East China University of Science and Technology,Department of Mathematics
来源
Science China Mathematics | 2013年 / 56卷
关键词
sub-fractional Brownian motion; Malliavin calculus; local time; Itô’s formula; quadratic covariation; 60G15; 60H05; 60H07;
D O I
暂无
中图分类号
学科分类号
摘要
Let SH be a sub-fractional Brownian motion with index 0 < H < 1/2. In this paper we study the existence of the generalized quadratic covariation [f(SH), SH](W) defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$[f(S^H ),S^H ]_t^{(W)} = \mathop {\lim }\limits_{\varepsilon \downarrow 0} \tfrac{1} {{\varepsilon ^{2H} }}\int_0^t {\{ f(S_{s + \varepsilon }^H ) - f(S_s^H )\} (S_{s + \varepsilon }^H - S_s^H )ds^{2H} } , $\end{document} provided the limit exists in probability, where x ↦ f(x) is a measurable function. We construct a Banach space ℋ of measurable functions such that the generalized quadratic covariation exists in L2 provided f ∈ ℋ. Moreover, the generalized Bouleau-Yor identity takes the form [graphic not available: see fulltext] for all f ∈ ℋ, where ℒH(x, t) is the weighted local time of SH. This allows us to write the generalized Itô’s formula for absolutely continuous functions with derivative belonging to ℋ.
引用
收藏
页码:2089 / 2116
页数:27
相关论文
共 59 条
  • [1] Alós E(2001)Stochastic calculus with respect to Gaussian processes Ann Probab 29 766-801
  • [2] Mazet O(2007)On Itô formula for elliptic diffusion processes Bernoulli 13 820-830
  • [3] Nualart D(2004)Sub-fractional Brownian motion and its relation to occupation times Statist Probab lett 69 405-419
  • [4] Bardina X(2007)Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems Elect Comm Probab 12 161-172
  • [5] Rovira C(1981)Sur la variation quadratique des temps locaux de certaines semimartingales C R Acad Sci Paris Sér I Math 292 491-494
  • [6] Bojdecki T(2000)Integration with respect to local time Potential Anal 13 303-328
  • [7] Gorostiza L(2007)Generalized Itô formulae and space-time Lebesgue Stieltjes integrals of local times Séminaire de Probabilités XL 117-136
  • [8] Talarczyk A(2006)Two-parameters Potential Anal 25 165-204
  • [9] Bojdecki T(1995)-variation paths and integrations of local times Bernoulli 1 149-169
  • [10] Gorostiza L G(2008)Quadratic covariation and an extension of Itô’s formula C R Acad Sci Paris Ser I 346 431-434