Canopy temperature variability as an indicator of crop water stress severity

被引:2
作者
M. P. González-Dugo
M. S. Moran
L. Mateos
R. Bryant
机构
[1] IFAPA,CIFA Alameda del Obispo
[2] USDA ARS Southwest Watershed Research Center,Instituto de Agricultura Sostenible
[3] CSIC,Centro de Investigación y Formación Agraria
[4] IFAPA,undefined
来源
Irrigation Science | 2006年 / 24卷
关键词
Water Stress; Root Zone; Latent Heat Flux; Irrigation Schedule; Canopy Temperature;
D O I
暂无
中图分类号
学科分类号
摘要
Irrigation scheduling requires an operational means to quantify plant water stress. Remote sensing may offer quick measurements with regional coverage that cannot be achieved by current ground-based sampling techniques. This study explored the relation between variability in fine-resolution measurements of canopy temperature and crop water stress in cotton fields in Central Arizona, USA. By using both measurements and simulation models, this analysis compared the standard deviation of the canopy temperature \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ {\left( {\sigma _{{T_{{\text{c}}} }} } \right)} $$\end{document} to the more complex and data intensive crop water stress index (CWSI). For low water stress, field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma _{{T_{{\text{c}}} }} $$\end{document} was used to quantify water deficit with some confidence. For moderately stressed crops, the \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma _{{T_{{\text{c}}} }} $$\end{document} was very sensitive to variations in plant water stress and had a linear relation with field-scale CWSI. For highly stressed crops, the estimation of water stress from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma _{{T_{{\text{c}}} }} $$\end{document} is not recommended. For all applications of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma _{{T_{{\text{c}}} }} , $$\end{document} one must account for variations in irrigation uniformity, field root zone water holding capacity, meteorological conditions and spatial resolution of Tc data. These sensitivities limit the operational application of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma _{{T_{{\text{c}}} }} $$\end{document} for irrigation scheduling. On the other hand, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma _{{T_{{\text{c}}} }} $$\end{document} was most sensitive to water stress in the range in which most irrigation decisions are made, thus, with some consideration of daily meteorological conditions, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$ \sigma _{{T_{{\text{c}}} }} $$\end{document} could provide a relative measure of temporal variations in root zone water availability. For large irrigation districts, this may be an economical option for minimizing water use and maximizing crop yield.
引用
收藏
页码:233 / 240
页数:7
相关论文
共 61 条
[1]  
Bralts VF(1983)Drip irrigation field uniformity estimation Trans ASAE 26 1369-1374
[2]  
Kesner CD(1982)Infrared thermometry for scheduling irrigation of corn Agron J 74 311-316
[3]  
Clawson KL(1981)Plant and air temperature in differentially-irrigated corn Agric Meteorol 25 207-217
[4]  
Blad BL(1965)Analytical design of sprinkler systems Trans ASAE 8 83-85
[5]  
Gardner BR(1988)A soil-adjusted vegetation index (SAVI) Remote Sens Environ 25 295-309
[6]  
Blad BL(1967)Relative importance of reradiation, convection and transpiration in heat transfer from plants Plant Physiol 42 631-640
[7]  
Watts DG(1969)Thermal radiation from the atmosphere J Geophys Res 74 5397-5403
[8]  
Hart WE(1981)Normalizing the stress-degree-day parameter for environmental variability Agric Meteorol 24 45-55
[9]  
Reynolds WN(1982)Canopy temperature and crop water stress Adv Irrig 1 43-85
[10]  
Huete AR(1981)Canopy temperature as a crop water stress indicator Water Resour Res 17 1133-1138