On Dirac and Pauli Operators

被引:0
作者
Lev V. Zilbergleit
机构
[1] Moscow Institute for Municipal Economy,
来源
Acta Applicandae Mathematica | 2002年 / 74卷
关键词
Clifford algebra; -adic filtration; -symbol; transfer operator; -grading; spinor; semispinor; De Broglie principle; Dirac operator; Pauli operator;
D O I
暂无
中图分类号
学科分类号
摘要
A unified description of the Dirac and Pauli operators based on the De Broglie principle is given. It includes descriptions of spinor modules as submodules in differential forms and the h-adic filtrations of these modules. A one-to-one correspondence between decomposable differential 2-forms of unit length and spinor modules is obtained. The Dirac operator is described as an operator acting on the h-adic filtrations of the spinor module. The Dirac-type operator is defined. It slightly differs from the Dirac operator at the one point only: its domain is the h-adic filtrations of the module of differential forms itself. It is shown that the restrictions of the Dirac-type operator to the h-adic filtrations of some spinor module is the Dirac operator if and only if the 2-form is a special solution of the Maxwell equations. The transfer operator for the Dirac operator is interpreted as an analog of the Pauli operator. A similar description of the Dirac and Pauli operators acting on vectorvalued fields is considered.
引用
收藏
页码:1 / 34
页数:33
相关论文
共 13 条
[1]  
de Broglie L.(1924)Sur la dynamique du quantum de lumière et les interférences C.R. Acad. Sci. 179 1039-1041
[2]  
Cartan E.(1913)Les groupes projectifs qui ne laissent invariante aucune multiplicité plane Bull. Soc. Math. France 41 53-96
[3]  
Dirac P. A. M.(1928)The quantum theory of the electron Proc. Royal Soc. A 117 610-624
[4]  
Kosmann Y.(1972)Derivees de Lie des spineurs Ann. Mat. Pura Appl. (4) 41 319-395
[5]  
Misner C.(1957)Classic physics as geometry Ann. of Phys. 2 525-603
[6]  
Wheeler J.(1967)Twistor algebra J. Math. Phys. 8 345-366
[7]  
Penrose R.(1925)Electrodynamics in the general relativity theory Trans. Amer. Math. Soc. 3 106-136
[8]  
Rainich G. Y.(1979)Complex manifolds and mathematical physics Bull. Amer. Math. Soc. 1 296-336
[9]  
Wells R. O.(1999)Graded differential equations and Dirac type operators Acta Appl. Math. 56 301-320
[10]  
Zilbergleit L.(1995)Singularities of solutions of the Maxwell-Dirac equation Amer. Math. Soc. Trans. Ser. 2 167 261-277