On the (C, α)-means with respect to the Walsh systemO (C, α)-средних для рядов по системе Уолша

被引:0
作者
I. Blahota
G. Tephnadze
机构
[1] College of Nyíregyháza,Institute of Mathematics and Computer Sciences
[2] Tbilisi State University,Department of Mathematics, Faculty of Exact and Natural Sciences
[3] Luleå University of Technology,Department of Engineering Sciences and Mathematics
来源
Analysis Mathematica | 2014年 / 40卷
关键词
Fourier Series; Hardy Space; Maximal Operator; Strong Convergence Theorem; Walsh System;
D O I
暂无
中图分类号
学科分类号
摘要
In our main result we prove strong convergence theorems for Cesàro means (C, α) on the Hardy spaces H1/(1+α), where 0 < α < 1.
引用
收藏
页码:161 / 174
页数:13
相关论文
共 28 条
[1]  
Fine N. J.(1949)On the Walsh function Trans. Amer. Math. Soc. 65 372-414
[2]  
Fujii N. J.(1979)A maximal inequality for Proc. Amer. Math. Soc. 77 111-116
[3]  
Gát G.(2003)-functions on a generalized Walsh-Paley group J. Approx. Theory 124 25-43
[4]  
Gát G.(1993)Cesàro means of integrable functions with respect to unbounded Vilenkin systems Acta Math. Hungar. 61 131-149
[5]  
Gát G.(2009)Investigations of certain operators with respect to the Vilenkin system Acta Math. Hungar. 125 65-83
[6]  
Goginava U.(2007)A weak type inequality for the maximal operator of ( Acta Math. Hungar. 115 333-340
[7]  
Goginava U.(2006))-means of Fourier series with respect to the Walsh-Kaczmarz system Ann. Univ. Sci. Budapest. Sect. Comput. 26 127-135
[8]  
Goginava U.(2002)Maximal operators of Fejér means of double Walsh-Fourier series J. Approx. Theory 115 9-20
[9]  
Goginava U.(2010)The maximal operator of the ( East J. Approx. 16 297-311
[10]  
Nagy K.(1977)) means of the Walsh-Fourier series Acta Math. Acad. Sci. Hungar. 29 155-164