New non-linear modified massless Klein–Gordon equation

被引:0
作者
Felipe A. Asenjo
Sergio A. Hojman
机构
[1] Universidad Adolfo Ibáñez,UAI Physics Center
[2] Universidad Adolfo Ibáñez,Facultad de Ingeniería y Ciencias
[3] Universidad Adolfo Ibáñez,Departamento de Ciencias, Facultad de Artes Liberales
[4] Universidad de Chile,Departamento de Física, Facultad de Ciencias
[5] Centro de Recursos Educativos Avanzados,undefined
[6] CREA,undefined
来源
The European Physical Journal C | 2017年 / 77卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The massless Klein–Gordon equation on arbitrary curved backgrounds allows for solutions which develop “tails” inside the light cone and, therefore, do not strictly follow null geodesics as discovered by DeWitt and Brehme almost 60 years ago. A modification of the massless Klein–Gordon equation is presented, which always exhibits null geodesic propagation of waves on arbitrary curved spacetimes. This new equation is derived from a Lagrangian which exhibits current–current interaction. Its non-linearity is due to a self-coupling term which is related to the quantum mechanical Bohm potential.
引用
收藏
相关论文
共 95 条
  • [1] Mathisson M(1937)undefined Acta Phys. Pol. 6 218-undefined
  • [2] Hojman SA(2013)undefined Class. Quantum Grav. 30 025008-undefined
  • [3] Asenjo FA(2014)undefined Class. Quantum Grav. 31 085011-undefined
  • [4] Zalaquett N(2016)undefined Class. Quantum Grav. 33 145011-undefined
  • [5] Hojman SA(1992)undefined Phys. Lett. A 170 413-undefined
  • [6] Asenjo FA(2013)undefined J. Math. Phys. 54 091503-undefined
  • [7] Armaza C(2001)undefined Class. Quantum Grav. 18 3843-undefined
  • [8] Hojman SA(1996)undefined Class. Quantum Grav. 13 1213-undefined
  • [9] Koch B(1995)undefined Class. Quantum Grav. 12 1087-undefined
  • [10] Zalaquett N(1995)undefined Class. Quantum Grav. 12 2327-undefined