Curvature Properties of Lorentzian Manifolds with Large Isometry Groups

被引:0
作者
Wafaa Batat
Giovanni Calvaruso
Barbara De Leo
机构
[1] École Normale Superieure de L’Enseignement Technique d’Oran,Département de Mathématiques et Informatique
[2] University of Salento,Dipartimento di Matematica “E. De Giorgi”
来源
Mathematical Physics, Analysis and Geometry | 2009年 / 12卷
关键词
Lorentzian manifolds; Homogeneous spaces; Symmetric spaces; Curvature; Einstein-like metrics; 53C50; 53C20; 53C30;
D O I
暂无
中图分类号
学科分类号
摘要
The curvature of Lorentzian manifolds (Mn,g), admitting a group of isometries of dimension at least 1/2n(n − 1) + 1, is completely described. Interesting behaviours are found, in particular as concerns local symmetry, local homogeneity and conformal flatness.
引用
收藏
页码:201 / 217
页数:16
相关论文
共 26 条
[1]  
Ambrose W(1958)On homogeneous Riemannian manifolds Duke Math. J. 25 647-669
[2]  
Singer IM(1997)Examples of curvature homogeneous Lorentz metrics Class. Quantum Gravity 14 93-96
[3]  
Bueken P(1990)Lorentz manifolds modelled on a Lorentz symmetric space J. Geom. Phys. 7 571-581
[4]  
Vanhecke L(2007)Homogeneous structures on three-dimensional Lorentzian manifolds J. Geom. Phys. 57 1279-1291
[5]  
Cahen M(2007)Einstein-like metrics on three-dimensional homogeneous Lorentzian manifolds Geom. Dedicata. 127 99-119
[6]  
Leroy J(1997)Special ball-homogeneous spaces Z. Anal. ihre Anwend. 16 789-800
[7]  
Parker M(2005)Three-dimensional Lorentz manifolds admitting a parallel null vector field J. Phys. A Math. Gen. 38 841-850
[8]  
Tricerri F(1980)Classification of certain compact Riemannian manifolds with harmonic curvature and nonparallel Ricci tensor Math. Z. 172 273-280
[9]  
Vanhecke L(1963)Riemannian spaces of the first three lacunary types in the geometric sense (Russian) Dokl. Akad. Nauk. SSSR 150 730-732
[10]  
Calvaruso G(2006)Non-reductive homogeneous pseudo-Riemannian manifolds of dimension four Can. J. Math. 58 282-311