On perfect powers that are sums of two Pell numbers

被引:0
|
作者
Hyacinthe Aboudja
Mohand Hernane
Salah Eddine Rihane
Alain Togbé
机构
[1] Oklahoma City University,Computer Science Department, Petree College of Art and Science (PCAS)
[2] Université des Sciences et de la Technologie Houari-Boumediène (USTHB),Laboratoire d’Algèbre et Théorie des Nombres, Faculté de Mathématiques
[3] University of Sciences and Technology Houari Boumediene,Laboratory of Algebra and Number Theory, Faculty of Mathematics
[4] Purdue University Northwest,Department of Mathematics, Statistics and Computer Science
来源
Periodica Mathematica Hungarica | 2021年 / 82卷
关键词
Perfect numbers; Exponential equations; Perfect powers; p-adic valuation; 11D61; 11B39;
D O I
暂无
中图分类号
学科分类号
摘要
Let Pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_k$$\end{document} denote the kth term of the Pell sequence. In this paper we find all solutions of the exponential Diophantine equation Pn+Pm=ys\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n+P_m = y^s$$\end{document} in positive integer variables (m, n, y, s) under the assumption n≡m(mod2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \equiv m \pmod 2$$\end{document}.
引用
收藏
页码:11 / 15
页数:4
相关论文
共 50 条
  • [21] Exact divisibility by powers of the Pell and Associated Pell numbers
    Panda, G. K.
    Patra, Asim
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2021, 131 (02):
  • [22] On perfect powers that are difference of two Perrin numbers or two Padovan numbers
    Merve Güney Duman
    Proceedings of the Indian National Science Academy, 2024, 90 : 124 - 131
  • [23] On perfect powers that are difference of two Perrin numbers or two Padovan numbers
    Duman, Merve Gueney
    PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2024, 90 (01): : 124 - 131
  • [24] Repdigits as sums of four Pell numbers
    Florian Luca
    Benedict Vasco Normenyo
    Alain Togbé
    Boletín de la Sociedad Matemática Mexicana, 2019, 25 : 249 - 266
  • [25] Sums of two cubes as twisted perfect powers, revisited
    Bennett, Michael A.
    Bruni, Carmen
    Freitas, Nuno
    ALGEBRA & NUMBER THEORY, 2018, 12 (04) : 959 - 999
  • [26] On perfect powers that are sum of two balancing numbers
    Pritam Kumar Bhoi
    Sudhansu Sekhar Rout
    Gopal Krishna Panda
    Periodica Mathematica Hungarica, 2024, 88 : 93 - 101
  • [27] On perfect powers that are sum of two balancing numbers
    Bhoi, Pritam Kumar
    Rout, Sudhansu Sekhar
    Panda, Gopal Krishna
    PERIODICA MATHEMATICA HUNGARICA, 2024, 88 (01) : 93 - 101
  • [28] Repdigits as sums of four Pell numbers
    Luca, Florian
    Normenyo, Benedict Vasco
    Togbe, Alain
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2019, 25 (02): : 249 - 266
  • [29] On a variant of Pillai problem: integers as difference between generalized Pell numbers and perfect powers
    Jonathan García
    Carlos A. Gómez
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [30] On a variant of Pillai problem: integers as difference between generalized Pell numbers and perfect powers
    Garcia, Jonathan
    Gomez, Carlos A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)