On perfect powers that are sums of two Pell numbers

被引:0
|
作者
Hyacinthe Aboudja
Mohand Hernane
Salah Eddine Rihane
Alain Togbé
机构
[1] Oklahoma City University,Computer Science Department, Petree College of Art and Science (PCAS)
[2] Université des Sciences et de la Technologie Houari-Boumediène (USTHB),Laboratoire d’Algèbre et Théorie des Nombres, Faculté de Mathématiques
[3] University of Sciences and Technology Houari Boumediene,Laboratory of Algebra and Number Theory, Faculty of Mathematics
[4] Purdue University Northwest,Department of Mathematics, Statistics and Computer Science
来源
Periodica Mathematica Hungarica | 2021年 / 82卷
关键词
Perfect numbers; Exponential equations; Perfect powers; p-adic valuation; 11D61; 11B39;
D O I
暂无
中图分类号
学科分类号
摘要
Let Pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_k$$\end{document} denote the kth term of the Pell sequence. In this paper we find all solutions of the exponential Diophantine equation Pn+Pm=ys\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n+P_m = y^s$$\end{document} in positive integer variables (m, n, y, s) under the assumption n≡m(mod2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \equiv m \pmod 2$$\end{document}.
引用
收藏
页码:11 / 15
页数:4
相关论文
共 50 条
  • [11] Powers of Two as Sums of Two Lucas Numbers
    Bravo, Jhon J.
    Luca, Florian
    JOURNAL OF INTEGER SEQUENCES, 2014, 17 (08)
  • [12] Powers of Two as Sums of Two Balancing Numbers
    Bartz, Jeremiah
    Dearden, Bruce
    Iiams, Joel
    Peterson, Julia
    COMBINATORICS, GRAPH THEORY AND COMPUTING, SEICCGTC 2021, 2024, 448 : 383 - 392
  • [13] On polynomials that are sums of two perfect qth powers
    Hooley, C.
    ACTA ARITHMETICA, 2010, 145 (01) : 1 - 31
  • [14] Perfect powers expressible as sums of two cubes
    Chen, Imin
    Siksek, Samir
    JOURNAL OF ALGEBRA, 2009, 322 (03) : 638 - 656
  • [15] Perfect powers expressible as sums of two fifth or seventh powers
    Dahmen, Sander R.
    Siksek, Samir
    ACTA ARITHMETICA, 2014, 164 (01) : 65 - 100
  • [16] PERFECT PELL AND PELL-LUCAS NUMBERS
    Bravo, Jhon J.
    Luca, Florian
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2019, 56 (04) : 381 - 387
  • [17] Powers of two as sums of three Fibonacci numbers
    Eric F. Bravo
    Jhon J. Bravo
    Lithuanian Mathematical Journal, 2015, 55 : 301 - 311
  • [18] Fibonacci numbers that are not sums of two prime powers
    Luca, F
    Stanica, P
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) : 1887 - 1890
  • [19] Powers of two as sums of three Fibonacci numbers
    Bravo, Eric F.
    Bravo, Jhon J.
    LITHUANIAN MATHEMATICAL JOURNAL, 2015, 55 (03) : 301 - 311
  • [20] Exact divisibility by powers of the Pell and Associated Pell numbers
    G K Panda
    Asim Patra
    Proceedings - Mathematical Sciences, 2021, 131