On perfect powers that are sums of two Pell numbers

被引:0
|
作者
Hyacinthe Aboudja
Mohand Hernane
Salah Eddine Rihane
Alain Togbé
机构
[1] Oklahoma City University,Computer Science Department, Petree College of Art and Science (PCAS)
[2] Université des Sciences et de la Technologie Houari-Boumediène (USTHB),Laboratoire d’Algèbre et Théorie des Nombres, Faculté de Mathématiques
[3] University of Sciences and Technology Houari Boumediene,Laboratory of Algebra and Number Theory, Faculty of Mathematics
[4] Purdue University Northwest,Department of Mathematics, Statistics and Computer Science
来源
Periodica Mathematica Hungarica | 2021年 / 82卷
关键词
Perfect numbers; Exponential equations; Perfect powers; p-adic valuation; 11D61; 11B39;
D O I
暂无
中图分类号
学科分类号
摘要
Let Pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_k$$\end{document} denote the kth term of the Pell sequence. In this paper we find all solutions of the exponential Diophantine equation Pn+Pm=ys\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_n+P_m = y^s$$\end{document} in positive integer variables (m, n, y, s) under the assumption n≡m(mod2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \equiv m \pmod 2$$\end{document}.
引用
收藏
页码:11 / 15
页数:4
相关论文
共 50 条
  • [1] On perfect powers that are sums of two Pell numbers
    Aboudja, Hyacinthe
    Hernane, Mohand
    Rihane, Salah Eddine
    Togbe, Main
    PERIODICA MATHEMATICA HUNGARICA, 2021, 82 (01) : 11 - 15
  • [2] ON PERFECT POWERS AS SUMS OR DIFFERENCES OF TWO k-GENERALISED PELL NUMBERS
    Patel, Bijan kumar
    Tripathy, Bibhu prasad
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2025,
  • [3] Powers of Two as Sums of Three Pell Numbers
    Bravo, Jhon J.
    Faye, Bernadette
    Luca, Florian
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (04): : 739 - 751
  • [4] PERFECT POWERS THAT ARE SUMS OF TWO POWERS OF FIBONACCI NUMBERS
    Zhang, Zhongfeng
    Togbe, Alain
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2019, 99 (01) : 34 - 41
  • [5] On perfect powers that are sums of two Fibonacci numbers
    Luca, Florian
    Patel, Vandita
    JOURNAL OF NUMBER THEORY, 2018, 189 : 90 - 96
  • [6] Sums of Fibonacci numbers that are perfect powers
    Ziegler, Volker
    QUAESTIONES MATHEMATICAE, 2023, 46 (08) : 1717 - 1742
  • [7] Pell and Pell–Lucas Numbers as Sums of Two Repdigits
    Chèfiath Adegbindin
    Florian Luca
    Alain Togbé
    Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43 : 1253 - 1271
  • [8] Pell and Pell-Lucas Numbers as Sums of Two Repdigits
    Adegbindin, Chefiath
    Luca, Florian
    Togbe, Alain
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (02) : 1253 - 1271
  • [9] Perfect Pell powers
    Cohn, JHE
    GLASGOW MATHEMATICAL JOURNAL, 1996, 38 : 19 - 20
  • [10] Repdigits As Sums Of Two Associated Pell Numbers
    Rayaguru, Sai Gopal
    Panda, Gopal Krishna
    APPLIED MATHEMATICS E-NOTES, 2021, 21 : 402 - 409