On Strongly Quasiconvex Functions: Existence Results and Proximal Point Algorithms

被引:0
作者
F. Lara
机构
[1] Universidad de Tarapacá,Departamento de Matemática, Facultad de Ciencias
来源
Journal of Optimization Theory and Applications | 2022年 / 192卷
关键词
Nonconvex optimization; Nonsmooth optimization; Strongly quasiconvex functions; Existence of solutions; Proximal point algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
We prove that every strongly quasiconvex function is 2-supercoercive (in particular, coercive). Furthermore, we investigate the usual properties of proximal operators for strongly quasiconvex functions. In particular, we prove that the set of fixed points of the proximal operator coincides with the unique minimizer of a lower semicontinuous strongly quasiconvex function. As a consequence, we implement the proximal point algorithm for finding the unique solution of the minimization problem of a strongly quasiconvex function by using a positive sequence of parameters bounded away from 0 and, in particular, we revisit the general quasiconvex case. Moreover, a new characterization for convex functions is derived from this analysis. Finally, an application for a strongly quasiconvex function which is neither convex nor differentiable nor locally Lipschitz continuous is provided.
引用
收藏
页码:891 / 911
页数:20
相关论文
共 51 条
[1]  
Aragón-Artacho FJ(2018)Accelerating the DC algorithm for smooth functions Math. Program. 169 95-118
[2]  
Fleming RMT(2016)On lower and upper bounds in smooth and strongly convex optimization J. Mach. Learn. Res. 17 1-51
[3]  
Vuong PT(2020)Robust accelerated gradient methods for smooth strongly convex functions SIAM. J. Optim. 30 717-751
[4]  
Arjevani Y(2003)Coercivity concepts and recession function in constrained problems Int. J. Math. Sci. 2 83-96
[5]  
Shalev-Shwartz S(2004)Proximal methods for cohypomonotone operators SIAM J. Control Optim. 43 731-742
[6]  
Shamir O(1997)-convex sets and strong quasiconvexity Math. Oper. Res. 22 998-1022
[7]  
Aybat NS(2019)Proximally guided stochastic sbgradient method for nonsmooth, nonconvex problems SIAM J. Optim. 29 1908-1930
[8]  
Fallah A(2012)Optimal stochastic approximation algorithms for strongly convex stochastic composite optimization I: a generic algorithmic framework SIAM. J. Optim. 22 1469-1492
[9]  
Gürbüzbalaban M(2021)An extension of proximal point algorithms beyond convexity J. Glob.Optim. 116 221-258
[10]  
Ozdaglar A(2009)Computing proximal points of nonconvex functions Math. Program. 15 2489-2512